Number Theory Summary

Integers Let \(Z \) denote the integers and \(Z^+ \) the positive integers.

Division For \(a \in Z \) and \(n \in Z^+ \), there exist unique integers \(q, r \) such that \(a = nq + r \) and \(0 \leq r < n \). We denote the quotient \(q \) by \(\lfloor a/n \rfloor \) and the remainder \(r \) by \(a \mod n \). We say \(n \) divides \(a \) (written \(n \mid a \)) if \(a \mod n = 0 \). If \(n \mid a \), \(n \) is called a divisor of \(a \). If also \(1 < n < |a| \), \(n \) is said to be a proper divisor of \(a \).

Greatest common divisor The greatest common divisor (gcd) of integers \(a, b \) (written \(\gcd(a, b) \) or simply \((a, b) \)) is the greatest integer \(d \) such that \(d \mid a \) and \(d \mid b \). If \(\gcd(a, b) = 1 \), then \(a \) and \(b \) are said to be relatively prime.

Euclidean algorithm Computes \(\gcd(a, b) \). Based on two facts: \(\gcd(0, b) = b \); \(\gcd(a, b) = \gcd(b, a - qb) \) for any \(q \in Z \). For rapid convergence, take \(q = \lfloor a/b \rfloor \), in which case \(a - qb = a \mod b \).

Congruence For \(a, b \in Z \) and \(n \in Z^+ \), we write \(a \equiv b \pmod{n} \) iff \(n \mid (b - a) \). Note \(a \equiv b \pmod{n} \) iff \((a \mod n) = (b \mod n) \).

Modular arithmetic Fix \(n \in Z^+ \). Let \(Z_n = \{0, 1, \ldots, n-1\} \) and let \(Z_n^* = \{a \in Z_n \mid \gcd(a, n) = 1\} \). For integers \(a, b \), define \(a \oplus b = (a+b) \mod n \) and \(a \odot b = ab \mod n \). \(\oplus \) and \(\odot \) are associative and commutative, and \(\odot \) distributes over \(\oplus \). Moreover, \(\text{mod} \ n \) distributes over both \(+ \) and \(\times \), so for example, \(a + b \times (c + d) \mod n = (a \mod n) + (b \mod n) \times ((c \mod n) + (d \mod n)) = a \oplus b \odot (c \oplus d) \). \(Z_n \) is closed under \(\oplus \) and \(\odot \), and \(Z_n^* \) is closed under \(\odot \).

Primes and prime factorization A number \(p \geq 2 \) is prime if it has no proper divisors. Any positive number \(n \) can be written uniquely (up to the order of the factors) as a product of primes. Equivalently, there exist unique integers \(k, p_1, \ldots, p_k, e_1, \ldots, e_k \) such that \(n = \prod_{i=1}^{k} p_i^{e_i} \), \(k \geq 0 \), \(p_1 < p_2 < \ldots < p_k \) are primes, and each \(e_i \geq 1 \). The product \(\prod_{i=1}^{k} p_i^{e_i} \) is called the prime factorization of \(n \). A positive number \(n \) is composite if \((\sum_{i=1}^{k} e_i) \geq 2 \) in its prime factorization. By these definitions, \(n = 1 \) has prime factorization with \(k = 0 \), so 1 is neither prime nor composite.

Linear congruences Let \(a, b \in Z, n \in Z^+ \). Let \(d = \gcd(a, n) \). If \(d \mid b \), then there are \(d \) solutions \(x \in Z_n \) to the congruence equation \(ax \equiv b \pmod{n} \). If \(d \nmid b \), then \(ax \equiv b \pmod{n} \) has no solution.

Extended Euclidean algorithm Finds one solution of \(ax \equiv b \pmod{n} \), or announces that there are none. Call a triple \((g, u, v)\) valid if \(g = au + nv \). Algorithm generates valid triples starting with \((n, 0, 1)\) and \((a, 1, 0)\). Goal is to find valid triple \((g, u, v)\) such that \(g \mid b \). If found, then \(u(b/g) \) solves \(ax \equiv b \pmod{n} \). If none exists, then no solution. Given valid \((g, u, v)\), \((g', u', v')\), can generate new valid triple \((g - qg', u - qu', v - qv')\) for any \(q \in Z \). For rapid convergence, choose \(q = \lfloor g/g' \rfloor \), and retain always last two triples. Note: Sequence of generated \(g\)-values is exactly the same as the sequence of numbers generated by the Euclidean algorithm.
Inverses Let \(n \in \mathbb{Z}^+, a \in \mathbb{Z} \). There exists unique \(b \in \mathbb{Z} \) such that \(ab \equiv 1 \pmod{n} \) iff \(\gcd(a, n) = 1 \). Such a \(b \), when it exists, is called an inverse of \(a \) modulo \(n \). We write \(a^{-1} \) for the unique inverse of \(a \) modulo \(n \) that is also in \(\mathbb{Z}_n \). Can find \(a^{-1} \pmod{n} \) efficiently by using Extended Euclidean algorithm to solve \(ax \equiv 1 \pmod{n} \).

Chinese remainder theorem Let \(n_1, \ldots, n_k \) be pairwise relatively prime numbers in \(\mathbb{Z}^+ \), let \(a_1, \ldots, a_k \) be integers, and let \(n = \prod_{i=1}^k n_i \). There exists a unique \(x \in \mathbb{Z}_n \) such that \(x \equiv a_i \pmod{n_i} \) for all \(1 \leq i \leq k \). To compute \(x \), let \(N_i = n/n_i \) and compute \(M_i = N_i^{-1} \pmod{n_i} \), \(1 \leq i \leq k \). Then \(x = (\sum_{i=1}^k a_i M_i N_i) \pmod{n} \).

Euler function Let \(\phi(n) = |\mathbb{Z}_n^*| \). One can show that \(\phi(n) = \prod_{i=1}^k (p_i - 1)p_i^{-e_i} \), where \(\prod_{i=1}^k p_i^{e_i} \) is the prime factorization of \(n \). In particular, if \(p \) is prime, then \(\phi(p) = p - 1 \), and if \(p, q \) are distinct primes, then \(\phi(pq) = (p - 1)(q - 1) \).

Euler’s theorem Let \(n \in \mathbb{Z}^+, a \in \mathbb{Z}_n^* \). Then \(a^{\phi(n)} \equiv 1 \pmod{n} \). As a consequence, if \(r \equiv s \pmod{\phi(n)} \) then \(a^r \equiv a^s \pmod{n} \).

Order of an element Let \(n \in \mathbb{Z}^+, a \in \mathbb{Z}_n^* \). We define \(\text{ord}(a) \), the order of \(a \) modulo \(n \), to be the smallest number \(k \geq 1 \) such that \(a^k \equiv 1 \pmod{n} \). Fact: \(\text{ord}(a) | \phi(n) \).

Primitive roots Let \(n \in \mathbb{Z}^+, a \in \mathbb{Z}_n^* \), \(a \) is a primitive root of \(n \) iff \(\text{ord}(a) = \phi(n) \). For a primitive root \(a \), it follows that \(\mathbb{Z}_n^* = \{a \pmod{n}, a^2 \pmod{n}, \ldots, a^{\phi(n)} \pmod{n}\} \). If \(n \) has a primitive root, then it has \(\phi(\phi(n)) \) primitive roots. Primitive roots exist for every prime \(p \) (and for some other numbers as well). \(a \) is a primitive root of \(p \) iff \(a^{(p-1)/q} \neq 1 \pmod{p} \) for every prime divisor \(q \) of \(p - 1 \).

Discrete log Let \(p \) be a prime, \(a \) a primitive root of \(p \), \(b \in \mathbb{Z}_p^* \) such that \(b \equiv a^k \pmod{p} \) for some \(k, 0 \leq k \leq p - 2 \). We say \(k \) is the discrete logarithm of \(b \) to the base \(a \).

Quadratic residues Let \(a \in \mathbb{Z}, n \in \mathbb{Z}^+ \), \(a \) is a quadratic residue modulo \(n \) if there exists \(y \) such that \(a \equiv y^2 \pmod{n} \). \(a \) is sometimes called a square and \(y \) its square root.

Quadratic residues modulo a prime If \(p \) is an odd prime, then every quadratic residue in \(\mathbb{Z}_p^* \) has exactly two square roots in \(\mathbb{Z}_p^* \), and exactly half of the elements in \(\mathbb{Z}_p^* \) are quadratic residues. Let \(a \in \mathbb{Z}_p^* \) be a quadratic residue. Then \(a^{(p-1)/2} \equiv (y^2)^{(p-1)/2} \equiv y^{p-1} \equiv 1 \pmod{p} \), where \(y \) a square root of \(a \) modulo \(p \). Let \(g \) be a primitive root modulo \(p \). If \(a \equiv g^k \pmod{p} \), then \(a \) is a quadratic residue modulo \(p \) iff \(k \) is even, in which case its two square roots are \(g^{k/2} \pmod{p} \) and \(-g^{k/2} \pmod{p} \). If \(p \equiv 3 \pmod{4} \) and \(a \in \mathbb{Z}_p^* \) is a quadratic residue modulo \(p \), then \(a^{(p+1)/4} \) is a square root of \(a \), since \((a^{(p+1)/4})^2 \equiv aa^{(p-1)/2} \equiv a \pmod{p} \).

Quadratic residues modulo products of two primes If \(n = pq \) for \(p, q \) distinct odd primes, then every quadratic residue in \(\mathbb{Z}_n^* \) has exactly four square roots in \(\mathbb{Z}_n^* \), and exactly 1/4 of the elements in \(\mathbb{Z}_n^* \) are quadratic residues. An element \(a \in \mathbb{Z}_n^* \) is a quadratic residue modulo \(n \) iff it is a quadratic residue modulo \(p \) and modulo \(q \). The four square roots of \(a \) can be found from its two square roots modulo \(p \) and its two square roots modulo \(q \) using the Chinese remainder theorem.

Legendre symbol Let \(a \geq 0, p \) an odd prime. \(\left(\frac{a}{p} \right) = 1 \) if \(a \) is a quadratic residue modulo \(p \), \(-1 \) if \(a \) is a quadratic non-residue modulo \(p \), and \(0 \) if \(p | a \). Fact: \(\left(\frac{a}{p} \right) = a^{(p-1)/2} \).
Jacobi symbol Let $a \geq 0$, n an odd positive number with prime factorization $\prod_{i=1}^{k} p_i^{e_i}$. We define $\left(\frac{a}{n} \right) = \prod_{i=1}^{k} \left(\frac{a}{p_i} \right)^{e_i}$. (By convention, this product is 1 when $k = 0$, so $\left(\frac{a}{1} \right) = 1$.) The Jacobi and Legendre symbols agree when n is an odd prime. If $\left(\frac{a}{n} \right) = -1$ then a is definitely not a quadratic residue modulo n, but if $\left(\frac{a}{n} \right) = 1$, a might or might not be a quadratic residue.

Computing the Jacobi symbol $\left(\frac{a}{n} \right)$ can be computed efficiently by a straightforward recursive algorithm, based on the following identities: $\left(\frac{0}{1} \right) = 1; \left(\frac{0}{n} \right) = 0$ for $n \neq 1; \left(\frac{a}{n} \right) = \left(\frac{a^n}{n} \right)$ if $a_1 \equiv a_2 \pmod{n}$; $\left(\frac{2}{n} \right) = 1$ if $n \equiv \pm 1 \pmod{8}$; $\left(\frac{2}{n} \right) = -1$ if $n \equiv \pm 3 \pmod{8}$; $\left(\frac{2a}{n} \right) = \left(\frac{2}{n} \right) \left(\frac{a}{n} \right)$ if $a \equiv 1 \pmod{4}$ or $n \equiv 1 \pmod{4}$; $\left(\frac{2n}{a} \right) = -\left(\frac{a}{n} \right)$ if $a \equiv n \equiv 3 \pmod{4}$.

Solovay-Strassen test for compositeness Let $n \in \mathbb{Z}^+$. If n is composite, then for roughly 1/2 of the numbers $a \in \mathbb{Z}^*_n$, $\left(\frac{a}{n} \right) \neq a^{(n-1)/2} \pmod{n}$. If n is prime, then for every $a \in \mathbb{Z}^*_n$, $\left(\frac{a}{n} \right) \equiv a^{(n-1)/2} \pmod{n}$.

Miller-Rabin test for compositeness Let $n \in \mathbb{Z}^+$ and write $n-1 = 2^k m$, where m is odd. Choose $1 \leq a \leq n-1$. Compute $b_i = a^{2^i m} \pmod{n}$ for $i = 0, 1, \ldots, k - 1$. If n is composite, then for roughly 3/4 of the possible values for a, $b_0 \neq 1$ and $b_i \neq -1$ for $0 \leq i \leq k - 1$. If n is prime, then for every a, either $b_0 = 1$ or $b_i = -1$ for some $i, 0 \leq i \leq k - 1$.

Michael J. Fischer

(Thanks to Miklós Csűrös, Andrei Serjantov, and Jerry Moon for pointing out errors in previous drafts.)

Last modified: October 26, 2000.