Linear Congruence Equations

Let \(a, x \in \mathbb{Z}_n^* \). Recall that \(x \) is said to be an inverse of \(a \) modulo \(n \) if \(ax \equiv 1 \) (mod \(n \)). It is easily seen that the inverse, if it exists, is unique modulo \(n \), for if \(ax \equiv 1 \) (mod \(n \)) and \(ay \equiv 1 \) (mod \(n \)), then \(x \equiv xay \equiv y \) (mod \(n \)). We denote this unique \(x \), when it exists, by \(a^{-1} \) (mod \(n \)) (or simply \(a^{-1} \) when the modulus \(n \) is clear from context).

Theorem 1

Let \(a \in \mathbb{Z}_n^* \). Then \(a^{-1} \) exists in \(\mathbb{Z}_n^* \).

Proof: Let \(a \in \mathbb{Z}_n^* \) and consider the function \(f_a(x) = ax \mod n \). \(f_a \) is easily shown to be a one-one mapping from \(\mathbb{Z}_n^* \) to \(\mathbb{Z}_n^* \). Hence, \(f_a \) is also onto, so for some \(x \in \mathbb{Z}_n^* \), \(f_a(x) = 1 \). Then \(ax \equiv 1 \) (mod \(n \)), so \(x = a^{-1} \) (mod \(n \)). \(\square \)

We showed in class how to use the Extended Euclidian algorithm to efficiently compute \(a^{-1} \) (mod \(n \)) given \(a \) and \(n \).

Here we consider the solvability of the more general linear congruence equation:

\[
ax \equiv b \pmod n
\]

where \(a, b \in \mathbb{Z}_n^* \) are constants, and \(x \) is a variable ranging over \(\mathbb{Z}_n^* \).

Theorem 2

Let \(a, b, n \in \mathbb{Z}_n^* \). Let \(d = \gcd(a, n) \). If \(d \mid b \) then \(ax \equiv b \pmod n \) has \(d \) solutions \(x_0, \ldots, x_{d-1} \), where

\[
x_t = \left(\frac{b}{d} \right) \bar{x} + \left(\frac{n}{d} \right) t
\]

and \(\bar{x} = (\frac{a}{d})^{-1} \pmod{\frac{n}{d}} \). If \(d \nmid n \), then \(ax \equiv b \pmod n \) has no solutions.

Proof: Let \(d = \gcd(a, n) \). Clearly if \(ax \equiv b \pmod n \), then \(d \mid b \), so there are no solutions if \(d \nmid b \).

Now suppose \(d \mid b \). Since \((\frac{a}{d}) \) and \((\frac{n}{d}) \) are relatively prime, \(\bar{x} \) exists by Theorem 1. Multiplying both sides of (2) by \(a \), we get

\[
a x_t = b \left(\frac{a}{d} \right) \bar{x} + n \left(\frac{a}{d} \right) t
\]

where now we are working over the integers. But \(\left(\frac{a}{d} \right) \bar{x} = 1 + kn \frac{a}{d} \) for some \(k \) by the definition of \(\bar{x} \), so substituting for \(\left(\frac{a}{d} \right) \bar{x} \) in (3) yields

\[
a x_t = b + kn \left(\frac{b}{d} \right) + n \left(\frac{a}{d} \right) t
\]

The quantities in parentheses are both integers, so it follows immediately that \(ax_t \equiv b \pmod n \) and hence \(x_t \) is a solution of (1).

It remains to show that the \(d \) solutions above are distinct modulo \(n \). But this is obvious since \(x_0 < x_1 < \ldots < x_{d-1} \) and \(x_{d-1} - x_0 = \frac{n}{d}(d - 1) < n \). \(\square \)