YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 467b: Cryptography and Computer Security

Professor M. J. Fischer

Handout #8 February 16, 2010

Problem Set 3

Due on Tuesday, February 23, 2010.

In the problems below, "textbook" refers to Wade Trapp and Lawrence C. Washington, *Introduction to Cryptography with Coding Theory, Second Edition*, Prentice-Hall, 2006.

Problem 1: Simplified DES

Textbook, problem 4-1.

Problem 2: DES Complementation Property

Textbook, problem 4-4.

Problem 3: Triple DES

Textbook, problem 4-6.

Problem 4: Modified Feistel Network

Textbook, problem 4-8.

Problem 5: Extended CFB Mode

Textbook, problem 4-9. (Note: "CFB mode" as used in this problem is what we called "Extended CFB mode" in the lectures.)

Problem 6: Fast exponentiation algorithm

A recursive algorithm for modular exponentiation was presented in class (Lecture 8, slide 17).

Here is a different recursive algorithm to do the same thing.

```
/* alternate method to compute m^e mod n recursively */
int modexp2( int m, int e, int n) {
    int r;
    if ( e == 0 ) return 1;
    if ( e&1 ) return m*modexp2(m, e-1, n) % n;
    r = modexp2(m, e/2, n);
    return r*r % n;
}
```

Both algorithms operate by computing $m^k \pmod{n}$ for various integers k.

- (a) Explain why modexp2 is correct.
- (b) For each algorithm, list the powers of m that are multiplied together during the course of the algorithm when computing m²³ (mod n). For example, if an algorithm computes m⁵ by computing m² = m * m, m³ = m² * m, m⁵ = m³ * m², you would list the exponent pairs (1, 1), (2, 1), and (3, 2).
- (c) Some of the multiplications performed by these algorithms are redundant. Which ones in part b are redundant?
- (d) Rewrite modexp2 to make exactly the same useful multiplications but avoid making the redundant ones.