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Solution to Midterm Examination

Instructions:

This is a closed book examination. Answer any 5 of the following 6 questions. Write the numbers of
the five questions that you want graded on the cover of your bluebook. All questions count equally.
You have 75 minutes. Remember to write your name on your bluebook and to justify your answers.
Good Luck!

Problem 1:

Consider a symmetric cryptosystem withM = C = {0, 1, 2, 3}, where the joint probability distri-
bution over message-ciphertext pairs is described by the table below.

m

c
0 1 2 3

0 .025 .050 .075 .100
1 .050 .075 .100 .025
2 .075 .100 .025 .050
3 .100 .025 .050 .075

(a) What is the initial distribution on the message space?

(b) What is the most likely message m3 given that c = 3, and what is the conditional probability
P [m = m3 | c = 3]?

(c) What can you say about the security of this cryptosystem? I.e., what does Eve learn about m
when she sees c?

(d) Describe a key space K and an encryption function c = Ek(m) that gives rise to the given
joint probability distribution when keys are chosen uniformly from K.

Solution:

(a) By total probability theorem, for any 0 ≤ i ≤ 3, we have

P (mi) =
∑
j

P (m = mi ∧ c = cj) = .025 + .050 + .075 + .100 = .25

(b) Given c = 3, the most likely plaintext is m3 = 0. The conditional probability

P [m = 0 | c = 3] =
P [m = 0 ∧ c = 3]

P [c = 3]
=
.100
.25

= .400



2 Solution to Midterm Examination

(c) When Eve sees c, she learns information about the distribution of the plaintext m in the form
of an a posteriori distribution overM. Namely,

P [m | c] =


.100 if m+ c ≡ 0 (mod 4)
.200 if m+ c ≡ 1 (mod 4)
.300 if m+ c ≡ 2 (mod 4)
.400 if m+ c ≡ 3 (mod 4)

(d) There are many possible answers. For example, let K = {0, 1, 2, 3, 5, 6, 7, 10, 11, 15} and
Ek(m) = (k −m) mod 4.

Problem 2: Security of a Symmetric Cryptosystem

Happy Hacker decides to improve on the Caesar cipher by making the key space larger. He keeps
M = C = {0, . . . , 25} as before, but he lets K = {0, . . . , 49} and defines

Ek(m) = (k +m) mod 26.

Compare the security of Hacker’s system with the ordinary Caesar cipher. Justify your answers.

Solution: Hacker’s system is less secure than ordinary Caesar, despite the larger key space. Be-
cause Ek(m) = Ek mod 26(m) for any k, the larger key space does not increase the number of
possible encryption functions, but it does alter their distribution. Now, E0(), . . . , E23() are twice
as likely to be chosen as E24() and E25(), so P [m | c] is not uniformly distributed, and Eve gets
partial information about m from seeing c.

Problem 3: Group Property

LetM = C = {0, . . . , 25} as in the Caesar cipher. Let the key space K be an arbitrary finite set, let
f : K → C be an arbitrary function, and let Ek(m) = (f(k) +m) mod 26.

For each of the following questions, answer whether it holds for all K and f(), for some K and
f(), or for no K and f().

(a) Is there a decryption function Dk(c) such that Dk(Ek(m)) = m for all m ∈ M? If so,
define it. If not, explain why not.

(b) Does the resulting symmetric cryptosystem have the group property? Why or why not?

Justify your answers.

Solution:

(a) It is true for all K and f(). The decryption function is

Dk(c) = (c− f(k)) mod 26

(b) It is true for some but not all (K, f() pairs.

True for some pairs If K = M and f() is the identity function, then the resulting cryp-
tosystem is the ordinary Caeser cipher, which is known to have the group property.

False for some pairs If f(k) = 1 for all k ∈ K, then the resulting cryptosystem does not
have the group property. Choose k1 = k2 ∈ K. Then Ek1,k2(m) = Ek2(Ek1(m)) =
(m+ 2) mod 26. Since Ek3(m) = (m+ 1) mod 26 for all k3 ∈ K, there is no k3 for
which Ek3 = Ek1,k2 ; hence, the group property does not hold.
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Problem 4: Feistel Network

DES is built from a Feistel network.

(a) Describe how a Feistel network can be used to build a symmetric cryptosystem from an
arbitrary “scrambling” function f() of appropriate type.

(b) Describe how encryption and decryption works for a cryptosystem built from a Feistel net-
work.

Solution:

(a) A Feistel network consists of some number t of stages. Each stage i uses f() and a subkey
Ki to map a pair of n-bit words (Li, Ri) to a new pair (Li+1, Ri+1). By applying the stages
in sequence, a t-stage network maps (L0, R0) to (Lt, Rt). (L0, R0) is the plaintext, and
(Lt, Rt) is the corresponding ciphertext.

(b) To encrypt a message (L0, R0), each stage works as follows:

Li+1 = Ri

Ri+1 = Li ⊕ f(Ri,Ki)

To decrypt a ciphertext (Lt, Rt), each stage works as follows:

Ri = Li+1

Li = Ri+1 ⊕ f(Ri,Ki) = Ri+1 ⊕ f(Li+1,Ki)

Problem 5: Message Authentication Codes (MAC)

(a) Define what a Message Authentication Code (MAC) system is and the properties it should
have.

(b) Describe a practical use for a MAC.

(c) Describe how to build a MAC system from a given symmetric cryptosystem.

Solution:

(a) A MAC system is a cryptographic system that generates a short piece of information used
to authenticate a message. A MAC is generated by a function Ck(m) that can be computed
by anyone knowing the secret key k. It should be hard for an attacker, without knowing k to
find any pair (m, ξ) such that ξ = Ck(m). A stronger property requires that the above is true
even if the attacker knows a set of valid MAC pairs {(m1, ξ1), . . . , (mt, ξt)} as long as m is
not a message in this set.

(b) A MAC can be used to authenticate the sender of a message. Given a symmetric cryptosys-
tem, Alice computes the MAC ξ = Ck(m) and sends (m, ξ) to Bob. Upon receipt of the pair,
Bob checks whether ξ = Ck(m). If so, the authentication succeeds; otherwise, the authen-
tication fails. By the properties of a MAC, an attacker without knowing k is unlikely to be
able to produce a valid pair (m, ξ) that will be accepted by Bob.
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(c) A MAC system can be built by using a block cipher in CBC or CFB chaining mode. Let
Ek be the resulting cryptosystem, defined for sequences of message blocks m1 . . .mt, and
suppose c = c1 . . . ct = Ek(m1 . . .mt). We define the MAC Ck(m) = ct. In CBC or CFB
mode, each ciphertext block ck depends on both the current message block mk and on the
previous ciphertext block ck−1. Hence, the last ciphertext block ct depends on the entire
message m1 . . .mt, as desired.

Problem 6: Congruence Equations

(a) Describe a necessary and sufficient condition for the congruence equation ax ≡ b (mod n)
to have a solution x ∈ Zn.

(b) Solve the congruence equation 45x ≡ 49 (mod 77).

Solution:

(a) The congruence equation ax ≡ b (mod n) has a solution x ∈ Zn iff n | (ax − b) for some
x ∈ Z iff

ax+ ny = b

for some x, y ∈ Z. This is a linear Diophantine equation. It has a solution iff gcd(a, n) | b.

(b) To solve
45x ≡ 49 (mod 77), (1)

we solve the corresponding Diophantine equation

45x+ 77y = 49. (2)

Since gcd(45, 77) = 1 | 49, this Diophantine equation has a solution. We use the extended
Euclidean algorithm to solve it.

i ri ui vi qi
1 45 1 0
2 77 0 1 0
3 45 1 0 1
4 32 -1 1 1
5 13 2 -1 2
6 6 -5 3 2
7 1 12 -7

Therefore, x = 12 and y = −7 satisfies

45x+ 77y = 1. (3)

The solution to (2) is x = 12 × 49 = 588 and y = −7 × 49 = −343. The solution to (1) is
x mod 77 = 588 mod 77 = 49.

(end of exam)
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