CPSC 467b: Cryptography and Computer Security

Lecture 7

Michael J. Fischer

Department of Computer Science
Yale University

February 1, 2010

Michael J. Fischer CPSC 467b, Lecture 7 1/21



@ Message authentication codes

© Asymmetric Cryptosystems

O RsA

Michael J. Fischer CPSC 467b, Lecture 7 2/21



MACs

Message authentication codes (MACs)

What Alice and Bob need to solve their problem is called a
Message Authentication Code or MAC.

A MAC is generated by a function Cx(m) that can be computed by
anyone knowing the secret key k.

It should be hard for an attacker, without knowing k, to find any
pair (m, &) such that £ = Cx(m).

This should remain true even if the attacker knows a set of valid

MAC pairs {(m1,&1),...,(m:, &)} so long as m itself is not the
message in one of the known pairs.

Michael J. Fischer CPSC 467b, Lecture 7 3/21



Computing a MAC

A block cipher such as DES can be used to compute a MAC by
making use of one of the ciphertext chaining modes CBC or CFB.

In these modes, the last ciphertext block c¢; depends on all t
message blocks my, ..., m;, so, we define Cx(m) = ¢;. The
function so computed is reputed to be a good MAC.

Note that the MAC is only a single block long. This is in general
much shorter than the message. A MAC acts like a checksum for
preserving data integrity, but it has the advantage that an
adversary cannot compute a valid MAC for an altered message.

Michael J. Fischer CPSC 467b, Lecture 7 4/21



Using a MAC

Sending an unencrypted authenticated message.
@ Alice sends m in the clear along with the MAC & = C(m).
@ Bob receives m’ and ¢/, possibly different from m and &.
@ Bob checks that ¢’ = Cx(m') and if so, accepts m’ as a valid
message from Alice.

Mallory successfully cheats if Bob accepts a message m’ as valid
that Alice never sent.

The assumed property of a MAC is that Mallory cannot do this,
even knowing a set of valid MAC pairs previously sent by Alice.

The MAC prevents forgery of messages but does not protect
privacy.

Michael J. Fischer CPSC 467b, Lecture 7 5/21



MACs
Protecting both privacy and authenticity

If Alice wants both privacy and authenticity, she can encrypt m
and use the MAC to protect the ciphertext from alteration.

@ Alice sends ¢ = Ex(m) and & = C(c).

@ Bob, after receiving ¢’ and &/, only decrypts ¢’ after first
verifying that ¢’ = Ci(c').

Michael J. Fischer CPSC 467b, Lecture 7

6/21



A flawed use of a MAC

Another possibility is for Alice to send ¢ = Ex(m) and £ = Ci(m).
Here, the MAC is computed from m, not c.

Bob, upon receiving ¢’ and &', first decrypts ¢’ to get m’ and then
checks that ¢ = Cx(m'), i.e., Bob checks &' = Cy(Dk(c"))

In practice, this might also work, but its security does not follow
from the assumed security property of the MAC.

The MAC property says Mallory cannot produce a pair (m’,¢’) for
an m’ that Alice never sent. It does not follow that he cannot
produce a pair (¢’,£’) that Bob will accept as valid, even though ¢’
is not the encryption of one of Alice's messages.

If Mallory succeeds in convincing Bob to accept (c’,¢’), then Bob
will decrypt ¢’ to get m" = Di(c’) and incorrectly accept m’ as
coming from Alice.

Michael J. Fischer CPSC 467b, Lecture 7 7/21



Example of a flawed use of a MAC

Here's how Mallory might find (c’, ) such that & = Cyx(Dk(c)).

Suppose the MAC function Cj and encryption function Ej are the
same. Then Cx(Dk(c")) = Ex(Di(c’)) = ¢’, so Bob accepts every
pair (c’, c’) as valid!!

A more plausible example is where Cj is derived from Ej using the
CBC or CFB chaining modes as described earlier. In that case, the
MAC is the last ciphertext block c;, and Bob will always accept
(c’, c;) as valid.

!The astute reader will notice that Ex(Dx(c)) might differ from ¢ for ¢ not
in the range of Ex. However, in most of the cryptosystems we consider, the
message space M and ciphertext space C are the same. When that is the case,
the range of Ej is all of C, so every ¢ € C can be written as ¢ = Ei(y) for some
message y, and Ex(Dk(c)) = Ex(Dk(Ek(y))) = Ex(y) = c.

Michael J. Fischer CPSC 467b, Lecture 7 8/21



2-key
Asymmetric cryptosystems

An asymmetric cryptosystem has a pair k = (ke, kg) of related
keys, the encryption key k. and the decryption key k.

Alice encrypts a message m by computing ¢ = Ej_(m).
Bob decrypts ¢ by computing m = Dy (c).

@ We sometimes write e instead of k. and d instead of ky, e.g.,
E.(m) and Dy4(c).

@ We sometimes write k instead of k. or kg where the meaning
is clear from context, e.g., Ex(m) and Di(c).

In practice, it isn't generally as confusing as all this, but the
potential for misunderstanding is there.

As always, the decryption function inverts the encryption function,
so m = Dgy(Ec(m)).

Michael J. Fischer CPSC 467b, Lecture 7 9/21



2-key
Security requirement

Should be hard for Eve to find m given ¢ = E.(m) and e.

@ The system remains secure even if the encryption key e is
made public!

@ Asymmetric cryptosystems are sometimes called 2-key or
public key cryptosystems. k. is the public key and ky the
private key.

Reason to make e public.

@ Anybody can send a private message to Bob. Sandra obtains
Bob's public key e and sends ¢ = E.(m) to Bob.

@ Bob recovers m by computing Dy(c), using his private key d.

This greatly simplifies key management. No longer need a secure
channel between Alice and Bob for the initial key distribution
(which | have carefully avoided talking about so far).

Michael J. Fischer CPSC 467b, Lecture 7 10/21



2-key

Man-in-the-middle attack against 2-key cryptosystem

An active adversary Mallory can carry out a nasty
man-in-the-middle attack.

@ Mallory sends his own encryption key to Sandra when she
attempts to obtain Bob's key.

@ Not knowing she has been duped, Sandra encrypts her private
data using Mallory's public key, so Mallory can read it (but
not Bob)!

@ To keep from being discovered, Mallory intercepts each
message from Sandra to Bob, decrypts using his own
decryption key, re-encrypts using Bob's public encryption key,
and sends it on to Bob. Bob, receiving a validly encrypted
message, is none the wiser.

Michael J. Fischer CPSC 467b, Lecture 7

11/21



2-key

Passive attacks against a 2-key cryptosystem

Making the encryption key public also helps a passive attacker.

@ Chosen-plaintext attacks are available since Eve can generate
as many plaintext-ciphertext pairs as she wishes using the
public encryption function Eg().

@ The public encryption function also gives Eve a foolproof way
to check the validity of a potential decryption. Namely, Eve
can verify Dgy(c) = mg for some candidate message mg by
checking that ¢ = E.(mp).

Redundancy in the set of meaningful messages is no longer
necessary.

Michael J. Fischer CPSC 467b, Lecture 7

12/21



2-key

Facts about asymmetric cryptosystem

Good asymmetric cryptosystems are much harder to design than
good symmetric cryptosystems.

All known asymmetric systems are orders of magnitude slower than
corresponding symmetric systems.

Michael J. Fischer CPSC 467b, Lecture 7 13/21



Hybrid cryptosystems

Asymmetric cryptosystems are often used in conjunction with a
symmetric cipher to form a hybrid system. Let (E2, D?) be a 2-key
cryptosystem and (E!, D!) be a 1-key cryptosystem.

Here's how Alice sends a secret message m to Bob.

@ Alice generates a random session key k for use with the 1-key
system.

o Alice computes ¢; = E}(m) and ¢ = E2(k), where e is Bob's
public key, and sends (ci, ¢z) to Bob.

e Bob computes k = D3(cz) using his private decryption key d
and then computes m = D (c1).

This is much more efficient than simply sending E2(m) when m is
much longer than k.

Note that the 2-key system is used to encrypt random messages!

Michael J. Fischer CPSC 467b, Lecture 7 14/21



Overview of RSA

Probably the most commonly used asymmetric cryptosystem today
is RSA, named from the initials of its three inventors, Rivest,
Shamir, and Adelman.

Unlike the symmetric systems we have been talking about so far,
RSA is based not on substitution and transposition but on
arithmetic involving very large integers — numbers that are
hundreds or even thousands of bits long.

To understand how RSA works requires knowing a bit of number
theory, which | will be presenting in the next few lectures. However,
the basic ideas can be presented quite simply, which I will do now.

Michael J. Fischer CPSC 467b, Lecture 7 15/21



RSA spaces

The message space, ciphertext space, and key space for RSA is the
set of integers between 0 and n — 1 for some very large integer n.

For now, think of n as a number so large that its binary
representation is 1024 bits long.

Michael J. Fischer CPSC 467b, Lecture 7 16/21



RSA

Encoding bit strings by integers

To use RSA as a block cipher to send bit strings, Alice must
convert each block to an integer m, and Bob must convert m back
to a block.

Many such encodings are possible, but perhaps the simplest is to
prepend a “1" to the block x and regard the result as a binary
integer m.

To decode m to a block, write out m in binary and then delete the
initial “1" bit.

To ensure that m < n as required, we limit the length of our blocks
to 1022 bits.

Michael J. Fischer CPSC 467b, Lecture 7 17/21



RSA key generation

Here's how Bob generates an RSA key pair.

@ Bob chooses two sufficiently large distinct prime numbers p
and g and computes n = pq.
For security, p and g should be about the same length (when
written in binary).

@ He computes two numbers e and d with a certain
number-theoretic relationship.

@ The public key is the pair k. = (e, n). The private key is the
pair kg = (d, n). The primes p and g are no longer needed
and should be discarded.

Michael J. Fischer CPSC 467b, Lecture 7

18/21



RSA

RSA encryption and decryption

To encrypt, Alice computes ¢ = m® mod n. 2

d

To decrypt, Bob computes m = ¢ mod n.

This works because, for all m, we have
m = (m® mod n)? mod n. (1)
Here, a mod n denotes the remainder when a is divided by n.

That’s all there is to it, once the keys have been found.
Most of the complexity in implementing RSA has to do with key
generation, which fortunately is done only infrequently.

2In the remainder of this discussion, messages and ciphertexts will refer to
integers in the range 0 to n — 1, not to bit strings.

Michael J. Fischer CPSC 467b, Lecture 7 19/21



RSA questions

You

should already be asking yourself the following questions:
How does one find n, e, d such that equation 1 is satisfied?
Why is RSA believed to be secure?

How can one implement RSA on a computer when most

computers only support arithmetic on 32-bit or 64-bit
integers, and how long does it take?

How can one possibly compute m® mod n for 1024 bit
numbers. m¢, before taking the remainder, has size roughly

(21024)21024 _ 21024><21024 _ 2210><21024 _ 221034
This is a number that is roughly 21%3* bits long! No computer
has enough memory to store that number, and no computer is

fast enough to compute it.

Michael J. Fischer CPSC 467b, Lecture 7

20/21



RSA

Tools needed to answer RSA questions

Two kinds of tools are needed to understand and implement RSA.

Algorithms: Need clever algorithms for primality testing, fast
exponentiation, and modular inverse computation.

Number theory: Need some theory of Z,, the integers modulo n,
and some special properties of numbers n that are
the product of two primes.

Michael J. Fischer CPSC 467b, Lecture 7 21/21



	Outline
	Message authentication codes
	Asymmetric Cryptosystems
	RSA

