Outline RSA Z_n Computing in \mathbf{Z}_n

CPSC 467b: Cryptography and Computer Security

Michael J. Fischer

Lecture 8 February 1, 2012

CPSC 467b. Lecture 8

1/42

-

Outline	RSA	Z <i>n</i> 000000000	Computing in Z <i>n</i>	RSA exponents

Number Theory Needed for RSA

 Z_n : The integers mod n

Modular arithmetic

GCD Relatively prime numbers, \mathbf{Z}_n^* , and $\phi(n)$

Computing in \mathbf{Z}_n

Modular multiplication Modular inverses Extended Euclidean algorithm

Generating RSA Encryption and Decryption Exponents

RSA

Number Theory Needed for RSA

CPSC 467b, Lecture 8

3/42

Outline	RSA	Zn	Computing in Z_n	RSA exponents
		00000000	000000000000000000000000000000000000000	

Number theory needed for RSA

Here's a summary of the number theory needed to understand RSA and its associate algorithms.

- Greatest common divisor, Z_n, mod n, φ(n), Z^{*}_n, and how to add, subtract, multiply, and find inverses mod n.
- Euler's theorem: $a^{\phi(n)} \equiv 1 \pmod{n}$ for $a \in \mathbf{Z}_n^*$.
- How to generate large prime numbers: density of primes and testing primality.

RSA exponents

How these facts apply to RSA

RSA

Outline

The RSA key pair (e, d) is chosen to satisfy the modular equation ed ≡ 1 (mod φ(n)).

Z.

To find (e, d), we repeatedly choose e at random from Z_n until we find one in Z_n^{*}, and then *solve* the modular equation ed ≡ 1 (mod φ(n)) for d. We compute gcd to test for membership in Z_n^{*}.

Computing in \mathbf{Z}_n

- Using *Euler's theorem*, we can show m^{ed} ≡ m (mod n) for all m ∈ Z^{*}_n. This implies D_d(E_e(m)) = m. To show that decryption works even in the rare case that m ∈ Z_n − Z^{*}_n requires some more number theory that we will omit.
- To find p and q, we choose large numbers and test each for primality until we find two distinct primes. We must show that the density of primes is large enough for this procedure to be feasible.

\mathbf{Z}_n : The integers mod n

- イロト イヨト イヨト ・ ヨー わえぐ

CPSC 467b, Lecture 8

6/42

Outline	RSA	Z _n	Computing in Z <i>n</i>	RSA exponents
Modular arithmetic				

The mod relation

We just saw that mod is a binary operation on integers.

Mod is also used to denote a relationship on integers:

 $a \equiv b \pmod{n}$ iff $n \mid (a - b)$.

That is, a and b have the same remainder when divided by n. An immediate consequence of this definition is that

 $a \equiv b \pmod{n}$ iff $(a \mod n) = (b \mod n)$.

Thus, the two notions of mod aren't so different after all!

We sometimes write $a \equiv_n b$ to mean $a \equiv b \pmod{n}$.

Outline	RSA	Z _n 00000000	Computing in Z <i>n</i>	RSA exponents
Modular arithmetic				

Mod is an equivalence relation

The two-place relationship \equiv_n is an *equivalence relation*.

Its equivalence classes are called *residue* classes modulo *n* and are denoted by $[b]_{\equiv_n} = \{a \mid a \equiv b \pmod{n}\}$ or simply by [b].

For example, if n = 7, then $[10] = \{\ldots -11, -4, 3, 10, 17, \ldots\}$.

Fact

[a] = [b] iff $a \equiv b \pmod{n}$.

Outline	RSA	Z _n 000000000	Computing in Z <i>n</i>	RSA exponents
Modular arithmetic				

Canonical names

If $x \in [b]$, then x is said to be a *representative* or *name* of the equivalence class [b]. Obviously, b is a representative of [b]. Thus, [-11], [-4], [3], [10], [17] are all names for the same equivalence class.

The *canonical* or preferred name for the class [b] is the unique integer in $[b] \cap \{0, 1, \dots, n-1\}$.

Thus, the canonical name for [10] is 10 mod 7 = 3.

Outline	RSA	Z _n ○○○●○○○○○	Computing in Z <i>n</i>	RSA exponents
Modular arithmetic				

Mod is a congruence relation

The relation \equiv_n is a *congruence relation* with respect to addition, subtraction, and multiplication of integers.

Fact

For each arithmetic operation $\odot \in \{+, -, \times\}$, if $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$, then

 $a \odot b \equiv a' \odot b' \pmod{n}$.

The class containing the result of $a \odot b$ depends only on the classes to which a and b belong and not the particular representatives chosen.

Hence, we can perform arithmetic on equivalence classes by operating on their names.

CPSC 467b, Lecture 8

Outline	RSA	Z _n	Computing in Z <i>n</i>	RSA exponents
GCD				

Greatest common divisor

Definition

The greatest common divisor of two integers a and b, written gcd(a, b), is the largest integer d such that $d \mid a$ and $d \mid b$.

gcd(a, b) is always defined unless a = b = 0 since 1 is a divisor of every integer, and the divisor of a non-zero number cannot be larger (in absolute value) than the number itself.

Question: Why isn't gcd(0,0) well defined?

Outline	RSA	Z _n	Computing in Z <i>n</i>	RSA exponents
GCD				

Computing the GCD

gcd(a, b) is easily computed if a and b are given in factored form. Namely, let p_i be the ith prime. Write $a = \prod p_i^{e_i}$ and $b = \prod p_i^{f_i}$. Then

 $gcd(a, b) = \prod p_i^{\min(e_i, f_i)}.$

Example: $168 = 2^3 \cdot 3 \cdot 7$ and $450 = 2 \cdot 3^2 \cdot 5^2$, so $gcd(168, 450) = 2 \cdot 3 = 6$.

However, factoring is believed to be a hard problem, and no polynomial-time factorization algorithm is currently known. (If it were easy, then Eve could use it to break RSA, and RSA would be of no interest as a cryptosystem.)

Outline	RSA	Z _n 000000000	Computing in Z <i>n</i>	RSA exponents
GCD				

Euclidean algorithm

Fortunately, gcd(a, b) can be computed efficiently without the need to factor a and b using the famous *Euclidean algorithm*.

Euclid's algorithm is remarkable, not only because it was discovered a very long time ago, but also because it works without knowing the factorization of a and b.

Outline	RSA	Z _n	Computing in Z <i>n</i>	RSA exponents
GCD				

Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the gcd function. In the following, assume a > 0 and $a \ge b \ge 0$:

$$gcd(a,b) = gcd(b,a)$$
(1)

$$gcd(a,0) = a \tag{2}$$

$$gcd(a, b) = gcd(a - b, b)$$
 (3)

Identity 1 is obvious from the definition of gcd. Identity 2 follows from the fact that every positive integer divides 0. Identity 3 follows from the basic fact relating divides and addition from lecture 7.

Outline	RSA	Z _n	Computing in Z _n	RSA exponents
GCD				

Computing GCD without factoring

The Euclidean identities allow the problem of computing gcd(a, b) to be reduced to the problem of computing gcd(a - b, b).

The new problem is "smaller" as long as b > 0.

The size of the problem gcd(a, b) is |a| + |b|, the sum of the two arguments. This leads to an easy recursive algorithm.

```
int gcd(int a, int b)
{
    if ( a < b ) return gcd(b, a);
    else if ( b == 0 ) return a;
    else return gcd(a-b, b);
}
Nevertheless, this algorithm is not very efficient, as you will quickly
discover if you attempt to use it, say, to compute gcd(100000, 2).</pre>
```

Outline	RSA	Z _n 00000000	Computing in Z <i>n</i>	RSA exponents		
GCD						

Repeated subtraction

Repeatedly applying identity (3) to the pair (a, b) until it can't be applied any more produces the sequence of pairs

$$(a, b), (a - b, b), (a - 2b, b), \dots, (a - qb, b).$$

The sequence stops when a - qb < b.

How many times you can subtract b from a while remaining non-negative?

Outline	RSA	Za	Computing in Z_n	RSA exponents				
GCD								
1								

Using division in place of repeated subtractions

The number of times is the quotient $\lfloor a/b \rfloor$.

The amout a - qb that is left after q subtractions is just the remainder $a \mod b$.

Hence, one can go directly from the pair (a, b) to the pair $(a \mod b, b)$, giving the identity

 $gcd(a, b) = gcd(a \mod b, b).$ (4)

Outline	RSA	Z <i>n</i> 00000000	Computing in Z _n	RSA exponents
GCD				

Full Euclidean algorithm

```
Recall the inefficient GCD algorithm.
int gcd(int a, int b) {
  if (a < b) return gcd(b, a);
  else if ( b == 0 ) return a:
  else return gcd(a-b, b);
The following algorithm is exponentially faster.
int gcd(int a, int b) {
  if (b == 0) return a:
  else return gcd(b, a%b);
7
Principal change: Replace gcd(a-b,b) with gcd(b, a\%b).
Besides collapsing repeated subtractions, we have a > b for all but
```

the top-level call on gcd(a, b). This eliminates roughly half of the remaining recursive calls.

Outline	RSA	Z _n	Computing in Z _n	RSA exponents
GCD				

Complexity of GCD

The new algorithm requires at most in O(n) stages, where *n* is the sum of the lengths of *a* and *b* when written in binary notation, and each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

```
int gcd(int a, int b) {
    int aa;
    while (b > 0) {
        aa = a;
        a = b;
        b = aa % b;
    }
    return a;
}
```

Outline	RSA	Z n 00000000	Computing in Z <i>n</i> 00000 €000 0000000000000000000000000000	RSA exponents
Relatively prime	numbers, \mathbf{Z}_n^* , and $\phi(n)$			

Relatively prime numbers

Two integers *a* and *b* are *relatively prime* if they have no common prime factors.

Equivalently, a and b are relatively prime if gcd(a, b) = 1.

Let \mathbf{Z}_n^* be the set of integers in \mathbf{Z}_n that are relatively prime to n, so

 $\mathbf{Z}_n^* = \{ a \in \mathbf{Z}_n \mid \gcd(a, n) = 1 \}.$

Outline	RSA	Z _n 000000000	Computing in Z _n	RSA exponents				
Relatively prime numbers, Z_n^* , and $\phi(n)$								

Euler's totient function $\phi(n)$

 $\phi(n)$ is the cardinality (number of elements) of \mathbf{Z}_n^* , i.e.,

 $\phi(n) = |\mathbf{Z}_n^*|.$

Properties of $\phi(n)$:

1. If p is prime, then

 $\phi(p)=p-1.$

2. More generally, if p is prime and $k \ge 1$, then

$$\phi(p^k) = p^k - p^{k-1} = (p-1)p^{k-1}$$

3. If gcd(m, n) = 1, then

$$\phi(mn) = \phi(m)\phi(n).$$

RSA	7	Computing in 7	RSA exponents				
NJA	- n		NOA exponentis				
	00000000	000000000000000000000000000000000000000					
Relatively prime numbers, Z_n^* , and $\phi(n)$							
	RSA pers, \mathbf{Z}_n^* , and $\phi(n)$	00000000	00000000000000000000000000000000000000				

Example: $\phi(26)$

Can compute $\phi(n)$ for all $n \ge 1$ given the factorization of n.

$$\begin{aligned} \phi(126) &= \phi(2) \cdot \phi(3^2) \cdot \phi(7) \\ &= (2-1) \cdot (3-1)(3^{2-1}) \cdot (7-1) \\ &= 1 \cdot 2 \cdot 3 \cdot 6 = 36. \end{aligned}$$

The 36 elements of \mathbf{Z}_{126}^* are:

1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 65, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125.

22/42

Outline	RSA	Z <i>n</i> 00000000	Computing in Z <i>n</i>	RSA exponents		
Relatively prime numbers, ${\sf Z}_n^*$, and $\phi(n)$						

A formula for $\phi(n)$

Here is an explicit formula for $\phi(n)$.

Theorem

Write n in factored form, so $n = p_1^{e_1} \cdots p_k^{e_k}$, where p_1, \ldots, p_k are distinct primes and e_1, \ldots, e_k are positive integers.¹ Then

$$\phi(n) = (p_1 - 1) \cdot p_1^{e_1 - 1} \cdots (p_k - 1) \cdot p_k^{e_k - 1}$$

For the product of distinct primes p and q,

 $\phi(pq) = (p-1)(q-1).$

¹By the fundamental theorem of arithmetic, every integer can be written uniquely in this way up to the ordering of the factors.

Computing in \mathbf{Z}_n

CPSC 467b, Lecture 8

24/42

Outline	RSA	Z <i>n</i> 000000000	Computing in Z _n	RSA exponents
Madelan and Math				
Modular multiplic	cation			

Multiplication modulo n

Theorem

\mathbf{Z}_n^* is closed under multiplication modulo n.

This says, if a and b are both in \mathbf{Z}_n^* , then (ab mod n) is also in \mathbf{Z}_n^* .

Proof.

If neither a nor b share a prime factor with n, then neither does their product ab.

Outline	RSA	Z _n 000000000	$Z_n \qquad \qquad \text{Computing in } Z_n \\ \circ $	
Modular multiplic	ation			

Example: Multiplication in \mathbf{Z}_{26}^*

Let $n = 26 = 2 \cdot 13$. Then

$$\begin{split} \mathbf{Z}_{26}^* &= \{1,3,5,7,9,11,15,17,19,21,23,25\} \\ \phi(\mathbf{26}) &= |\mathbf{Z}_{26}^*| = 12. \end{split}$$

Multiplication examples:

 $5 \times 7 \mod 26 = 35 \mod 26 = 9$.

 $3 \times 25 \mod 26 = 75 \mod 26 = 23$.

 $9 \times 3 \mod 26 = 27 \mod 26 = 1$.

We say that 3 is the *multiplicative inverse* of 9 in Z_{26}^* .

Outline	RSA	Z _n 000000000	Computing in Z_n	RSA exponents
Modular inverses				

Example: Inverses the elements in \mathbf{Z}_{26}^* .

X	1	3	5	7	9	11	15	17	19	21	23	25
x^{-1}	1	9	21	15	3	19	7	23	11	5	17	25
\equiv_n	1	9	-5	-11	3	-7	7	-3	11	5	_9	-1

Bottom row gives equivalent integers in range [-12, ..., 13]. Note that $(26 - x)^{-1} = -x^{-1}$.

Hence, last row reads same back to front except for change of sign. Once the inverses for the first six numbers are known, the rest of the table is easily filled in.

Outline	RSA	Z _n 000000000	$\begin{array}{c} \text{Computing in } \mathbf{Z}_n \\ \hline \end{array}$	RSA exponents
Modular inverses				

Finding modular inverses

Let $u \in \mathbf{Z}_n^*$. We wish to find u^{-1} modulo n.

By definition, u^{-1} is the element $v \in \mathbf{Z}_n^*$ (if it exists) such that

$uv \equiv 1 \pmod{n}$.

This equation holds iff n|(uv - 1) iff uv - 1 = qn for some integer q (positive or negative).

We can rewrite this equation as

$$uv - nq = 1. \tag{5}$$

u and *n* are given and *v* and *q* are unknowns. If we succeed in finding a solution over the integers, then *v* is the desired inverse u^{-1} .

Outline	RSA	$Z_n \qquad \qquad \text{Computing in } Z_n$	RSA exponents
Modular inverses			

Diophantine equations

A *Diophantine equation* is a linear equation in two unknowns over the integers.

$$ax + by = c \tag{6}$$

Here, a, b, c are given integers. A solution consists of integer values for the unknowns x and y that make (6) true.

We see that equation 5 fits the general form for a Diophantine equation, where

$$\begin{aligned} a &= u \\ b &= -n \\ c &= 1 \end{aligned}$$
 (7)

Outline	RSA	Z _n Computing in Z	
Modular inverses			

Existence of solution

Theorem The Diophantine equation

ax + by = c

has a solution over **Z** (the integers) iff gcd(a, b) | c.

It can be solved by a process akin to the Euclidean algorithm, which we call the *Extended Euclidean algorithm*.

Outline	RSA	Z _n 000000000	Computing in Z_n	RSA exponents
Extended Euclidean algorithm				

The algorithm generates a sequence of triples of numbers $T_i = (r_i, u_i, v_i)$, each satisfying the invariant

$$r_i = au_i + bv_i \ge 0. \tag{8}$$

Outline	RSA	Z _n 00000000	Computing in Z_n	RSA exponents
Extended Euclidean algorithm				

The algorithm generates a sequence of triples of numbers $T_i = (r_i, u_i, v_i)$, each satisfying the invariant

$$r_i = au_i + bv_i \ge 0. \tag{8}$$

$$T_1 = \begin{cases} (a, 1, 0) & \text{if } a \ge 0\\ (-a, -1, 0) & \text{if } a < 0 \end{cases}$$
$$T_2 = \begin{cases} (b, 0, 1) & \text{if } b \ge 0\\ (-b, 0, -1) & \text{if } b < 0 \end{cases}$$

- <ロ> <個> <回> <回> (

CPSC 467b, Lecture 8

31/42

Outline	RSA	Zn	Computing in \mathbf{Z}_n	RSA exponents	
		11 I I I I I I I I I I I I I I I I I I			
		000000000000000000000000000000000000000	000000000000000		
		000000000000000000000000000000000000000	000000000000000000000000000000000000000		
Extended Euclidean algorithm					

$$r_i = au_i + bv_i \ge 0. \tag{8}$$

 T_{i+2} is obtained by subtracting a multiple of T_{i+1} from from T_i so that $r_{i+2} < r_{i+1}$. This is similar to the way the Euclidean algorithm obtains (*a* mod *b*) from *a* and *b*.

Outline	RSA	Zn	Computing in \mathbf{Z}_n	RSA exponents
		0000000000000	000000000000000000000000000000000000000	
Extended Euclidean algorithm				

$$r_i = au_i + bv_i \ge 0. \tag{8}$$

 T_{i+2} is obtained by subtracting a multiple of T_{i+1} from from T_i so that $r_{i+2} < r_{i+1}$. This is similar to the way the Euclidean algorithm obtains (*a* mod *b*) from *a* and *b*.

In detail, let
$$q_{i+1} = \lfloor r_i/r_{i+1} \rfloor$$
. Then $T_{i+2} = T_i - q_{i+1}T_{i+1}$, so
 $r_{i+2} = r_i - q_{i+1}r_{i+1} = r_i \mod r_{i+1}$
 $u_{i+2} = u_i - q_{i+1}u_{i+1}$
 $v_{i+2} = v_i - q_{i+1}v_{i+1}$

CPSC 467b, Lecture 8

Outline	RSA	Z _n	Computing in Z _n	RSA exponents
Extended Euclide	an algorithm			

$$r_i = au_i + bv_i \ge 0. \tag{8}$$

 T_{i+2} is obtained by subtracting a multiple of T_{i+1} from from T_i so that $r_{i+2} < r_{i+1}$. This is similar to the way the Euclidean algorithm obtains (*a* mod *b*) from *a* and *b*.

In detail, let
$$q_{i+1} = \lfloor r_i/r_{i+1} \rfloor$$
. Then $T_{i+2} = T_i - q_{i+1}T_{i+1}$, so
 $r_{i+2} = r_i - q_{i+1}r_{i+1} = r_i \mod r_{i+1}$
 $u_{i+2} = u_i - q_{i+1}u_{i+1}$
 $v_{i+2} = v_i - q_{i+1}v_{i+1}$

The sequence of generated pairs (r_1, r_2) , (r_2, r_3) , (r_3, r_4) , ... is exactly the same as the sequence generated by the Euclidean algorithm. We stop when $r_t = 0$. Then $r_{t-1} = \gcd(a, b)$.

Outline	RSA	Z _n Computing in Z		
Extended Euclidean algorithm				

$$r_i = au_i + bv_i \ge 0. \tag{8}$$

From (8) it follows that

$$gcd(a,b) = au_{t-1} + bv_{t-1}$$
(9)

.

CPSC 467b, Lecture 8

31/42

Outline	RSA	Z _n 000000000000000000000000000000000000	Computing in Z _n	RSA exponents
Extended Euclide	an algorithm			

Finding all solutions

Returning to the original equation,

$$ax + by = c \tag{6}$$

・ロ > ・ 同 > ・ 三 > ・ 三 > ・

if
$$c = gcd(a, b)$$
, then $x = u_{t-1}$ and $y = v_{t-1}$ is a solution.

If $c = k \cdot \text{gcd}(a, b)$ is a multiple of gcd(a, b), then $x = ku_{t-1}$ and $y = kv_{t-1}$ is a solution.

Otherwise, gcd(a, b) does not divide c, and one can show that (6) has no solution.

Outline	RSA	$Z_n \qquad \qquad \text{Computing in } Z_n$	
Extended Euclide	ean algorithm		

Example of extended Euclidean algorithm

Suppose one wants to solve the equation

$$31x - 45y = 3$$
 (10)

Here, a = 31 and b = -45. We begin with the triples

$$T_1 = (31, 1, 0)$$

 $T_2 = (45, 0, -1)$

CPSC 467b, Lecture 8

Outline	RSA	Z _n 000000000	Computing in Z _n	RSA exponents
Extended Euclide	an algorithm			

Computing the triples

The computation is shown in the following table:

i	ri	ui	Vi	qi
1	31	1	0	
2	45	0	-1	0
3	31	1	0	1
4	14	-1	-1	2
5	3	3	2	4
6	2	-13	_9	1
7	1	16	11	2
8	0	-45	-31	

34/42

伺 ト イヨト イヨト

Outline	RSA	Z _n 00000000	Computing in Z_n	RSA exponents
Extended Euclide	ean algorithm			

Extracting the solution

From $T_7 = (1, 16, 11)$, we obtain the solution x = 16 and y = 11 to the equation

$$1 = 31x - 45y$$

We can check this by substituting for x and y:

$$31 \cdot 16 + (-45) \cdot 11 = 496 - 495 = 1.$$

The solution to

$$31x - 45y = 3 \tag{10}$$

is then $x = 3 \cdot 16 = 48$ and $y = 3 \cdot 11 = 33$.

35/42

Generating RSA Encryption and Decryption Exponents

CPSC 467b, Lecture 8

36/42

Outline	RSA	Z <i>n</i> 000000000	Computing in Z <i>n</i>	RSA exponents

Recall RSA exponent requirement

Recall that the RSA encryption and decryption exponents must be chosen so that

$$ed \equiv 1 \pmod{\phi(n)},\tag{11}$$

that is, d is e^{-1} in $\mathbf{Z}^*_{\phi(n)}$.

How does Alice choose e and d to satisfy (11)?

- Choose a random integer $e \in \mathbf{Z}^*_{\phi(n)}$.
- ▶ Solve (11) for *d*.

We know now how to solve (11), but how does Alice sample at random from $\mathbf{Z}^*_{\phi(n)}$?

Outline	RSA	Zn	Computing in Z_n	RSA exponents
		00000000	000000000000000000000000000000000000000	

Sampling from \mathbf{Z}_n^*

If $Z_{\phi(n)}^*$ is large enough, Alice can just choose random elements from $Z_{\phi(n)}$ until she encounters one that also lies in $Z_{\phi(n)}^*$.

A candidate element *e* lies in $\mathbf{Z}^*_{\phi(n)}$ iff $gcd(e, \phi(n)) = 1$, which can be computed efficiently using the Euclidean algorithm.²

 $^{2}\phi(n)$ itself is easily computed for an RSA modulus n = pq since $\phi(n) = (p-1)(q-1)$ and Alice knows p and q.

Outline	RSA	Z _n 000000000	Computing in Z <i>n</i>	RSA exponents

How large is large enough?

If $\phi(\phi(n))$ (the size of $\mathbf{Z}_{\phi(n)}^*$) is much smaller than $\phi(n)$ (the size of $\mathbf{Z}_{\phi(n)}$), Alice might have to search for a long time before finding a suitable candidate for e.

In general, \mathbf{Z}_m^* can be considerably smaller than m. Example:

$$m = |\mathbf{Z}_m| = 2 \cdot 3 \cdot 5 \cdot 7 = 210$$

$$\phi(m) = |\mathbf{Z}_m^*| = 1 \cdot 2 \cdot 4 \cdot 6 = 48.$$

In this case, the probability that a randomly-chosen element of Z_m falls in Z_m^* is only 48/210 = 8/35 = 0.228...

Outline	RSA	Z _n 00000000	Computing in Z <i>n</i>	RSA exponents

A lower bound on $\phi(m)/m$

The following theorem provides a crude lower bound on how small \mathbf{Z}_m^* can be relative to the size of \mathbf{Z}_m .

Theorem For all $m \ge 2$,

$$\frac{|\mathbf{Z}_m^*|}{|\mathbf{Z}_m|} \geq \frac{1}{1 + \lfloor \log_2 m \rfloor}.$$

Outline	RSA	Z n 000000000000000000000000000000000000	Computing in Z n	RSA exponents
Proof				
		where p_i is the $p_i = \prod_{i=1}^t (p_i - 1) p_i^t$	$r^{ m th}$ prime that divides $r_{ m e_{i^{r}}-1}$, so	n and
Z Z	$\frac{\mathbf{Z}_m^*}{\mathbf{Z}_m } = \frac{\phi(m)}{m} =$	$=\frac{\prod_{i=1}^t(p_i-1)p_i^{e_i}}{\prod_{i=1}^t p_i^{e_i}}$	$\frac{1}{p_i-1} = \prod_{i=1}^t \left(\frac{p_i-1}{p_i}\right).$	(12)

Outline	RSA	Z <i>n</i> Computing in Z <i>n</i>	RSA exponents
Proof.			

$$\frac{|\mathbf{Z}_m^*|}{|\mathbf{Z}_m|} = \frac{\phi(m)}{m} = \frac{\prod_{i=1}^t (p_i - 1)p_i^{e_i - 1}}{\prod_{i=1}^t p_i^{e_i}} = \prod_{i=1}^t \left(\frac{p_i - 1}{p_i}\right).$$
(12)

To estimate the size of $\prod_{i=1}^{t} (p_i - 1)/p_i$, note that

$$\left(\frac{p_i-1}{p_i}\right) \geq \left(\frac{i}{i+1}\right).$$

This follows since (x-1)/x is monotonic increasing in x, and $p_i \ge i+1$. Then $\prod_{i=1}^t \left(\frac{p_i-1}{p_i}\right) \ge \prod_{i=1}^t \left(\frac{i}{i+1}\right) = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{t}{t+1} = \frac{1}{t+1}.$ (13)

Outline	RSA	Z _n 000000000	Computing in Z <i>n</i>	RSA exponents

Proof.

$$\frac{|\mathbf{Z}_{m}^{*}|}{|\mathbf{Z}_{m}|} = \frac{\phi(m)}{m} = \frac{\prod_{i=1}^{t} (p_{i}-1)p_{i}^{e_{i}-1}}{\prod_{i=1}^{t} p_{i}^{e_{i}}} = \prod_{i=1}^{t} \left(\frac{p_{i}-1}{p_{i}}\right). \quad (12)$$
$$\prod_{i=1}^{t} \left(\frac{p_{i}-1}{p_{i}}\right) \ge \prod_{i=1}^{t} \left(\frac{i}{i+1}\right) = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{t}{t+1} = \frac{1}{t+1}. \quad (13)$$

Clearly $t \leq \lfloor \log_2 m \rfloor$ since $2^t \leq \prod_{i=1}^t p_i \leq m$ and t is an integer.

Combining this with equations (12) and (13) gives the desired result.

$$\frac{|\mathbf{Z}_m^*|}{|\mathbf{Z}_m|} \ge \frac{1}{t+1} \ge \frac{1}{1+\lfloor \log_2 m \rfloor}.$$
(14)

(□) (四) (三) (三) (三)

Outline	RSA	Zn	Computing in Z_n	RSA exponents
		000000000000000000000000000000000000000		

Expected difficulty of choosing RSA exponent e

For *n* a 1024-bit integer, $\phi(n) < n < 2^{1024}$.

Hence, $\log_2(\phi(n)) < 1024$, so $\lfloor \log_2(\phi(n)) \rfloor \le 1023$.

By the theorem, the fraction of elements in $Z_{\phi(n)}$ that also lie in $Z^*_{\phi(n)}$ is at least

$$rac{1}{1+\lfloor \log_2 \phi(n)
floor} \geq rac{1}{1024}.$$

Therefore, the expected number of random trials before Alice finds a number in $\mathbf{Z}^*_{\phi(n)}$ is provably at most 1024 and is likely much smaller.

ロト (四) (モト (モト) ヨ