
Outline Euler RSA modulus Primality tests RSA Security

CPSC 467b: Cryptography and Computer
Security

Michael J. Fischer

Lecture 9
February 6, 2012

CPSC 467b, Lecture 9 1/53

Outline Euler RSA modulus Primality tests RSA Security

Euler’s Theorem

Generating RSA Modulus
Finding primes by guess and check
Density of primes

Primality Tests
Strong primality tests
Weak tests of compositeness
Reformulation of weak tests of compositeness
Examples of weak tests

RSA Security
Factoring n
Computing φ(n)
Finding d directly
Finding plaintext

CPSC 467b, Lecture 9 2/53

Outline Euler RSA modulus Primality tests RSA Security

Euler’s Theorem

CPSC 467b, Lecture 9 3/53

Outline Euler RSA modulus Primality tests RSA Security

Repeated multiplication in Z∗n

If any element x ∈ Z∗n is repeatedly multiplied by itself, the result
is eventually 1. 1

Example, for x = 5 ∈ Z∗26: 5, 25, 21, 1, 5, 25, 21, 1, . . .

Let xk denote the result of multiplying x by itself k times.
The order of x , written ord(x), is the smallest integer k ≥ 1 for
which xk = 1.

Theorem
ord(x) |φ(n). (Recall, φ(n) is the size of Z∗n).

1The first repeated element must be x . If not, then some y 6= x is the first
to repeat. The element immediately preceding each occurrence of y is yx−1.
But then yx−1 is the first to repeat, a contradiction. Hence, x = xk+1 for some
k ≥ 1, so xk = xk+1x−1 = xx−1 = 1.

CPSC 467b, Lecture 9 4/53

Outline Euler RSA modulus Primality tests RSA Security

Euler’s and Fermat’s theorem

Theorem (Euler’s theorem)

xφ(n) ≡ 1 (mod n) for all x ∈ Z∗n.

Proof.
Since ord(x) |φ(n), we have

xφ(n) ≡ (xord(x))φ(n)/ord(x) ≡ 1φ(n)/ord(x) ≡ 1 (mod n).

As a special case, we have

Theorem (Fermat’s theorem)

x (p−1) ≡ 1 (mod p) for all x, 1 ≤ x ≤ p − 1, where p is prime.

CPSC 467b, Lecture 9 5/53

Outline Euler RSA modulus Primality tests RSA Security

An important corollary

Corollary

Let r ≡ s (mod φ(n)). Then ar ≡ as (mod n) for all a ∈ Z∗n.

Proof.
If r ≡ s (mod φ(n)), then r = s + uφ(n) for some integer u. Then
using Euler’s theorem, we have

ar ≡ as+uφ(n) ≡ as · (au)φ(n) ≡ as · 1 ≡ as (mod n),

as desired.

CPSC 467b, Lecture 9 6/53

Outline Euler RSA modulus Primality tests RSA Security

Application to RSA

Recall the RSA encryption and decryption functions

Ee(m) = me mod n

Dd(c) = cd mod n

where n = pq is the product of two distinct large primes p and q.

This corollary gives a sufficient condition on e and d to ensure that
the resulting cryptosystem works. That is, we require that

ed ≡ 1 (mod φ(n)).

Then Dd(Ee(m)) ≡ med ≡ m1 ≡ m (mod n) for all messages
m ∈ Z∗n.

CPSC 467b, Lecture 9 7/53

Outline Euler RSA modulus Primality tests RSA Security

Messages not in Z∗n

What about the case of messages m ∈ Zn − Z∗n?

There are several answers to this question.

1. Alice doesn’t really want to send such messages if she can
avoid it.

2. If Alice sends random messages, her probability of choosing a
message not in Z∗n is very small — only about 2/

√
n.

3. RSA does in fact work for all m ∈ Zn, even though Euler’s
theorem fails for m 6∈ Z∗n.

CPSC 467b, Lecture 9 8/53

Outline Euler RSA modulus Primality tests RSA Security

Why Alice might want to avoid sending messages not in Z∗n

If m ∈ Zn − Z∗n, either p |m or q |m (but not both because
m < pq).

If Alice ever sends such a message and Eve is astute enough to
compute gcd(m, n) (which she can easily do), then Eve will
succeed in breaking the cryptosystem.

Why?

CPSC 467b, Lecture 9 9/53

Outline Euler RSA modulus Primality tests RSA Security

Why a random message is likely to be in Z∗n

The number of messages in Zn − Z∗n is only

n − φ(n) = pq − (p − 1)(q − 1) = p + q − 1

out of a total of n = pq messages altogether.

If p and q are both 512 bits long, then the probability of choosing
a bad message is only about 2 · 2512/21024 = 1/2511.

Such a low-probability event will likely never occur during the
lifetime of the universe.

CPSC 467b, Lecture 9 10/53

Outline Euler RSA modulus Primality tests RSA Security

RSA works anyway

For m ∈ Zn − Z∗n, RSA works anyway, but for different reasons.

For example, if m = 0, it is clear that (0e)d ≡ 0 (mod n), yet
Euler’s theorem fails since 0φ(n) 6≡ 1 (mod n).

We omit the proof of this curiosity.

CPSC 467b, Lecture 9 11/53

Outline Euler RSA modulus Primality tests RSA Security

Generating RSA Modulus

CPSC 467b, Lecture 9 12/53

Outline Euler RSA modulus Primality tests RSA Security

Random primes

Recall RSA modulus

Recall the RSA modulus, n = pq. The numbers p and q should be
random distinct primes of about the same length.

The method for finding p and q is similar to the
“guess-and-check” method used to find random numbers in Z∗m.

Namely, keep generating random numbers p of the right length
until a prime is found. Then keep generating random numbers q of
the right length until a prime different from p is found.

CPSC 467b, Lecture 9 13/53

Outline Euler RSA modulus Primality tests RSA Security

Random primes

Generating random primes of a given length

To generate a k-bit prime:

I Generate k − 1 random bits.

I Put a “1” at the front.

I Regard the result as binary number, and test if it is prime.

We defer the question of how to test if the number is prime and
look now at the expected number of trials before this procedure
will terminate.

CPSC 467b, Lecture 9 14/53

Outline Euler RSA modulus Primality tests RSA Security

Density of primes

Expected number of trials to find a prime

The above procedure samples uniformly from the set
Bk = Z2k − Z2k−1 of binary numbers of length exactly k .

Let pk be the fraction of elements in Bk that are prime. Then the
expected number of trials to find a prime is 1/pk .

While pk is difficult to determine exactly, the celebrated Prime
Number Theorem allows us to get a good estimate on that
number.

CPSC 467b, Lecture 9 15/53

Outline Euler RSA modulus Primality tests RSA Security

Density of primes

Prime number function

Let π(n) be the number of numbers ≤ n that are prime.

For example, π(10) = 4 since there are four primes ≤ 10, namely,
2, 3, 5, 7.

CPSC 467b, Lecture 9 16/53

Outline Euler RSA modulus Primality tests RSA Security

Density of primes

Prime number theorem

Theorem
π(n) ≈ n/(ln n), where ln n is the natural logarithm loge n.

Notes:

I We ignore the critical issue of how good an approximation this
is. The interested reader is referred to a good mathematical
text on number theory.

I Here e = 2.71828 . . . is the base of the natural logarithm, not
to be confused with the RSA encryption exponent, which, by
an unfortunate choice of notation, we also denote by e.

CPSC 467b, Lecture 9 17/53

Outline Euler RSA modulus Primality tests RSA Security

Density of primes

Likelihood of randomly finding a prime

The chance that a randomly picked number in Zn is prime is

π(n − 1)

n
≈ n − 1

n · ln(n − 1)
≈ 1

ln n
.

Since Bk = Z2k − Z2k−1 , we have

pk =
π(2k − 1)− π(2k−1 − 1)

2k−1

=
2π(2k − 1)

2k
− π(2k−1 − 1)

2k−1

≈ 2

ln 2k
− 1

ln 2k−1
≈ 1

ln 2k
=

1

k ln 2
.

Hence, the expected number of trials before success is ≈ k ln 2.
For k = 512, this works out to 512× 0.693 . . . ≈ 355.

CPSC 467b, Lecture 9 18/53

Outline Euler RSA modulus Primality tests RSA Security

Primality Tests

CPSC 467b, Lecture 9 19/53

Outline Euler RSA modulus Primality tests RSA Security

Algorithms for testing primality

The remaining problem for generating an RSA key is how to test if
a large number is prime.

I At first sight, this problem seems as hard as factoring.

I In 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena
found a deterministic primality test which runs in time
Õ(N12). This was later improved to Õ(N6). Here, N is the
length of the number to be tested when written in binary, and
Õ hides a polylogarithmic factor in N. (See Wikipedia.)

I Even now it is not known whether any deterministic algorithm
is feasible in practice.

I However, there do exist fast probabilistic algorithms for
testing primality.

CPSC 467b, Lecture 9 20/53

http://en.wikipedia.org/wiki/AKS_primality_test#Algorithm

Outline Euler RSA modulus Primality tests RSA Security

Tests for primality

A primality test is a deterministic procedure that correctly answers
‘composite’ or ‘prime’ for each input n ≥ 2.

To arrive at a probabilistic algorithm, we extend the notion of a
primality test in two ways:

1. We give it an extra “helper” string a.

2. We allow it to answer ‘?’, meaning “I don’t know”.

Given input n and helper string a, such an algorithm may correctly
answer either ‘composite’ or ‘?’ when n is composite, and it may
correctly answer either ‘prime’ or ‘?’ when n is prime.

If the algorithm gives a non-‘?’ answer, we say that the helper
string a is a witness to that answer.

CPSC 467b, Lecture 9 21/53

Outline Euler RSA modulus Primality tests RSA Security

Probabilistic primality testing algorithm

We can build a probabilistic primality testing algorithm from a
primality test T (n, a).

Algorithm P1(n):
repeat forever {

Generate a random helper string a;
Let r = T (n, a);
if (r 6= ‘?’) return r ;

};

This algorithm has the property that it might not terminate (in
case there are no witnesses to the correct answer for n), but when
it does terminate, the answer is correct.

CPSC 467b, Lecture 9 22/53

Outline Euler RSA modulus Primality tests RSA Security

Trading off non-termination against possibility of failure

By bounding the number of trials, termination is guaranteed at the
cost of possible failure. Let t be the maximum number of trials
that we are willing to perform. The algorithm then becomes:

Algorithm P2(n, t):
repeat t times {

Generate a random helper string a;
Let r = T (n, a);
if (r 6= ‘?’) return r ;

}
return ‘?’;

Now the algorithm is allowed to give up and return ‘?’, but only
after trying t times to find the correct answer.

CPSC 467b, Lecture 9 23/53

Outline Euler RSA modulus Primality tests RSA Security

Strong primality tests

Strong primality tests

A primality test T (n, a) is strong if there are “many” witnesses to
the correct answer.

For a strong test, the probability is “high” that a random helper
string is a witness, so the algorithm P2 will usually succeed.

Unfortunately, we do not know of any strong primality test that
has lots of witnesses to the correct answer for every n ≥ 2.

Fortunately, a weaker test can still be useful.

CPSC 467b, Lecture 9 24/53

Outline Euler RSA modulus Primality tests RSA Security

Compositeness

Weak tests

A weak test of compositeness T (n, a) is only required to have
many witnesses to the correct answer when n is composite.

When n is prime, a weak test always answers ‘?’, so there are no
witnesses to n being prime.

Hence, the test either outputs ‘composite’ or ‘?’ but never
‘prime’.

An answer of ‘composite’ means that n is definitely composite,
but these tests can never say for sure that n is prime.

CPSC 467b, Lecture 9 25/53

Outline Euler RSA modulus Primality tests RSA Security

Compositeness

Use of a weak test of compositeness

Let T (n, a) be a weak test of compositeness. Algorithm P2 is a
“best effort” attempt to prove that n is composite.

Since T is a weak test, we can slightly simplify P2.

Algorithm P3(n, t):
repeat t times {

Generate a random helper string a;
if (T (n, a) = ‘composite’) return ‘composite’;

}
return ‘?’;

P3 returns ‘composite’ just in case it finds a witness a to the
compositeness of n.

CPSC 467b, Lecture 9 26/53

Outline Euler RSA modulus Primality tests RSA Security

Compositeness

Algorithm P3 using a weak test

When algorithm P3 answers ‘composite’, n is definitely composite.

Turning this around, we have:

I If n is composite and t is sufficiently large, then with high
probability, P3(n, t) outputs ‘composite’.

I If n is prime, then P3(n, t) always outputs ‘?’.

CPSC 467b, Lecture 9 27/53

Outline Euler RSA modulus Primality tests RSA Security

Compositeness

Meaning of output ?

It is tempting to interpret ‘?’ as meaning “n is probably prime”.

However, it makes no sense to say that n is probably prime; n
either is or is not prime.

It also is not true that if I guess “prime” whenever I see output ?
that I will be correct with high probability.
Why not?

Imagine the test is run repeatedly on n = 15. Every now and then
the output will be ?, but “prime” is never correct in this case.

What does make sense is to say that the probability is small that
P3 answers ‘?’ when n is in fact composite.

CPSC 467b, Lecture 9 28/53

Outline Euler RSA modulus Primality tests RSA Security

Compositeness

Finding a random prime

Algorithm GenPrime(k):
const int t=20;
do {

Generate a random k-bit integer x ;
} while (P3(x , t) == ‘composite’);
return x ;

The number x that GenPrime() returns has the property that P3

failed to find a witness, but there is still the possibility that x is
composite.

CPSC 467b, Lecture 9 29/53

Outline Euler RSA modulus Primality tests RSA Security

Compositeness

Success probability for GenPrime(k)

We are interested in the probability that the number returned by
GenPrime(k) is prime.

This probability depends on both the failure probability of P3 and
also on the density of primes in the set being sampled.

The fewer primes there are, the more composite numbers are likely
to be tried before a prime is encountered, and the more
opportunity there is for P3 to fail.

What would happen if the set being sampled contained only
composite numbers?

CPSC 467b, Lecture 9 30/53

Outline Euler RSA modulus Primality tests RSA Security

Boolean tests

Boolean test of compositeness

We now reformulate weak tests of compositeness as Boolean
functions.

A Boolean function τ(n, a) can be interpreted as a weak test of
compositeness by taking true to mean ‘composite’ and false to
mean ‘?’.

There’s nothing deep here. We’re just changing notation.

CPSC 467b, Lecture 9 31/53

Outline Euler RSA modulus Primality tests RSA Security

Boolean tests

Meaning of a Boolean test of compositeness

Let τ(n, a) be a Boolean test of compositeness.
Write τa(n) to mean τ(n, a).

I If τa(n) = true, we say that τa succeeds on n, and a is a
witness to the compositeness of n.

I If τa(n) = false, then τa fails on n and gives no information
about the compositeness of n.

Clearly, if n is prime, then τa fails on n for all a, but if n is
composite, then τa may succeed for some values of a and fail for
others.

CPSC 467b, Lecture 9 32/53

Outline Euler RSA modulus Primality tests RSA Security

Boolean tests

Useful tests

A test of compositeness τ is useful if

I there is a feasible algorithm that computes τ(n, a);

I for every composite number n, τa(n) succeeds for a fraction
c > 0 of the helper strings a.

CPSC 467b, Lecture 9 33/53

Outline Euler RSA modulus Primality tests RSA Security

Boolean tests

Sample use of a useful test

Suppose for simplicity that c = 1/2 and one computes τa(n) for
100 randomly-chosen values for a.

I If any of the τa succeeds, we have a proof a that n is
composite.

I If all fail, we don’t know whether or not n is prime or
composite. But we do know that if n is composite, the
probability that all 100 tests fail is only 1/2100.

CPSC 467b, Lecture 9 34/53

Outline Euler RSA modulus Primality tests RSA Security

Boolean tests

Application to RSA

In practice, we use GenPrime(k) to choose RSA primes p and q,
where the constant t is set according to the number of witnesses
and the confidence levels we would like to achieve.

For c = 1/2, using t = 20 trials gives us a failure probability of
about one in a million when testing a composite number a.

We previously argued that we expect to test 355 numbers, 354 of
which are composite, in order to find one suitable RSA prime. For
an RSA modulus n = pq, we then expect to test 708 composite
numbers on average, giving P3 that many opportunities to fail.
Hence, the probability that the resulting RSA modulus is bad is
roughly 708/106 ≈ 1/1412. t can be increased if this risk of failure
is deemed to be too large.

CPSC 467b, Lecture 9 35/53

Outline Euler RSA modulus Primality tests RSA Security

Example tests

Finding weak tests of compositeness

We still need to find useful weak tests of compositeness.

We begin with two simple examples. While neither is useful, they
illustrate some of the ideas behind the useful tests that we will
present later.

CPSC 467b, Lecture 9 36/53

Outline Euler RSA modulus Primality tests RSA Security

Example tests

The division test δa(n)

Let
δa(n) = (2 ≤ a ≤ n − 1 and a|n).

Test δa succeeds on n iff a is a proper divisor of n, which indeed
implies that n is composite. Thus, {δa}a∈Z is a valid test of
compositeness.

Unfortunately, it isn’t useful since the fraction of witnesses to n’s
compositeness is exponentially small.

For example, if n = pq for p, q prime, then the only witnesses are
p and q, and the only tests that succeed are δp and δq.

CPSC 467b, Lecture 9 37/53

Outline Euler RSA modulus Primality tests RSA Security

Example tests

The Fermat test ζa(n)

Let
ζa(n) = (2 ≤ a ≤ n − 1 and an−1 6≡ 1 (mod n)).

By Fermat’s theorem, if n is prime and gcd(a, n) = 1, then
an−1 ≡ 1 (mod n).

Hence, if ζa(n) succeeds, it must be the case that n is not prime.

This shows that {ζa}a∈Z is a valid test of compositeness.

For this test to be useful, we would need to know that every
composite number n has a constant fraction of witnesses.

CPSC 467b, Lecture 9 38/53

Outline Euler RSA modulus Primality tests RSA Security

Example tests

Carmichael numbers (Fermat pseudoprimes)

Unfortunately, there are certain composite numbers n called
Carmichael numbers2 for which there are no witnesses, and all of
the tests ζa fail. Such n are fairly rare, but they do exist. The
smallest such n is 561 = 3 · 11 · 17. 3

Hence, Fermat tests are not useful tests of compositeness
according to our definition, and they are unable to distinguish
Carmichael numbers from primes.

Further information on primality tests may be found in section C.9
of Goldwasser and Bellare.

2Carmichael numbers are sometimes called Fermat pseudoprimes.
3See http://en.wikipedia.org/wiki/Carmichael number for further

information.

CPSC 467b, Lecture 9 39/53

http://cseweb.ucsd.edu/~mihir/papers/gb.pdf
http://en.wikipedia.org/wiki/Carmichael_number

Outline Euler RSA modulus Primality tests RSA Security

RSA Security

CPSC 467b, Lecture 9 40/53

Outline Euler RSA modulus Primality tests RSA Security

Attacks on RSA

The security of RSA depends on the computational difficulty of
several different problems, corresponding to different ways that Eve
might attempt to break the system.

I Factoring n

I Computing φ(n)

I Finding d directly

I Finding plaintext

We examine each in turn and look at their relative computational
difficulty.

CPSC 467b, Lecture 9 41/53

Outline Euler RSA modulus Primality tests RSA Security

Factoring

RSA factoring problem

Definition (RSA factoring problem)

Given a number n that is known to be the product of two primes p
and q, find p and q.

Clearly, if Eve can find p and q, then she can compute the
decryption key d from the public encryption key (e, n) (in the same
way that Alice did when generating the key).

This completely breaks the system, for now Eve has the same
power as Bob to decrypt all ciphertexts.

This problem is a special case of the general factoring problem.
It is believed to be intractable, although it is not known to be
NP-complete.

CPSC 467b, Lecture 9 42/53

Outline Euler RSA modulus Primality tests RSA Security

φ(n)

φ(n) problem

Definition (φ(n) problem)

Given a number n that is known to be the product of two primes p
and q, compute φ(n).

Eve doesn’t really need to know the factors of n in order to break
RSA. It is enough for her to know φ(n), since that allows her to
compute d = e−1 (mod φ(n)).

Computing φ(n) is no easier than factoring n. Given n and φ(n),
Eve can factor n by solving the system of quadratic equations

n = pq

φ(n) = (p − 1)(q − 1)

for p and q using standard methods of algebra.

CPSC 467b, Lecture 9 43/53

Outline Euler RSA modulus Primality tests RSA Security

Finding d

Decryption exponent problem

Definition (Decryption exponent problem)

Given an RSA public key (e, n), find the decryption exponent d .

Eve might somehow be able to find d directly from e and n even
without the ability to factor n or to compute φ(n).

That would represent yet another attack that couldn’t be ruled out
by the assumption that the RSA factoring problem is hard.
However, that too is not possible, as we now show.

CPSC 467b, Lecture 9 44/53

Outline Euler RSA modulus Primality tests RSA Security

Finding d

Factoring n knowing e and d

We begin by finding unique integers s and t such that

2st = ed − 1

and t is odd.

This is always possible since ed − 1 6= 0.

Express ed − 1 in binary. Then s is the number of trailing zeros
and t is the value of the binary number that remains after the
trailing zeros are removed.

Since ed − 1 ≡ 0 (mod φ(n)) and 4 |φ(n) (since both p − 1 and
q − 1 are even), it follows that s ≥ 2.

CPSC 467b, Lecture 9 45/53

Outline Euler RSA modulus Primality tests RSA Security

Finding d

Square roots of 1 (mod n)

Over the reals, each positive number has two square roots, one
positive and one negative, and no negative numbers have real
square roots.

Over Z∗n for n = pq, 1/4 of the numbers have square roots, and
each number that has a square root actually has four.

Since 1 does have a square root modulo n (itself), there are four
possibilities for b:

±1 mod n and ± r mod n

for some r ∈ Z∗n, r 6≡ ±1 (mod n).

CPSC 467b, Lecture 9 46/53

Outline Euler RSA modulus Primality tests RSA Security

Finding d

Finding a square root of 1 (mod n)
Using randomization to find a square root of 1 (mod n).

I Choose random a ∈ Z∗n.

I Define a sequence b0, b1, . . . , bs , where bi = a2i t mod n,
0 ≤ i ≤ s.

I Each number in the sequence is the square of the number
preceding it (mod n).

I The last number in the sequence is bs = aed−1 mod n.

I Since ed ≡ 1 (mod φ(n)), it follows using Euler’s theorem
that bs ≡ 1 (mod n).

I Since 12 mod n = 1, every element of the sequence following
the first 1 is also 1.

Hence, the sequence consists of a (possibly empty) block of non-1
elements, following by a block of one or more 1’s.

CPSC 467b, Lecture 9 47/53

Outline Euler RSA modulus Primality tests RSA Security

Finding d

Using a non-trivial square root of unity to factor n

Suppose b2 ≡ 1 (mod n). Then n |(b2 − 1) = (b + 1)(b − 1).

Suppose further that b 6≡ ±1 (mod n). Then n ∼| (b + 1) and
n ∼| (b − 1).

Therefore, one of the factors of n divides b + 1 and the other
divides b − 1.

Hence, p = gcd(b − 1, n) is a non-trivial factor of n.
The other factor is q = n/p.

CPSC 467b, Lecture 9 48/53

Outline Euler RSA modulus Primality tests RSA Security

Finding d

Randomized factoring algorithm knowing d

Factor (n, e, d) { //finds s, t such that ed − 1 = 2st and t is odd
s = 0; t = ed − 1;
while (t is even) {s++; t/=2; }
// Search for non-trivial square root of 1 (mod n)
do {

// Find a random square root b of 1 (mod n)
choose a ∈ Z∗n at random;
b = at mod n;
while (b2 6≡ 1 (mod n)) b = b2 mod n;

} while (b ≡ ±1 (mod n));

// Factor n
p = gcd(b − 1, n);
q = n/p;
return (p, q);

}
CPSC 467b, Lecture 9 49/53

Outline Euler RSA modulus Primality tests RSA Security

Finding d

Notes on the algorithm
Notes:

I b0 is the value of b when the innermost while loop is first
entered, and bk is the value of b after the kth iteration.

I The inner loop executes at most s − 1 times since it
terminates just before the first 1 is encountered, that is, when
b2 ≡ 1 (mod n).

I At that time, b = bk is a square root of 1 (mod n).
I The outer do loop terminates if and only if b 6≡ ±1 (mod n).

At that point we can factor n.

The probability that b 6≡ ±1 (mod n) for a randomly chosen
a ∈ Z∗n is at least 0.5.4 Hence, the expected number of iterations
of the do loop is at most 2.

4(See Evangelos Kranakis, Primality and Cryptography, Theorem 5.1.)

CPSC 467b, Lecture 9 50/53

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471909343.html

Outline Euler RSA modulus Primality tests RSA Security

Finding d

Example
Suppose n = 55, e = 3, and d = 27.5

Then ed − 1 = 80 = (1010000)2, so s = 4 and t = 5.

Now, suppose we choose a = 2. We compute the sequence of b’s.
b0 = at mod n = 25 mod 55 = 32
b1 = (b0)2 mod n = (32)2 mod 55 = 1024 mod 55 = 34
b2 = (b1)2 mod n = (34)2 mod 55 = 1156 mod 55 = 1
b3 = (b2)2 mod n = (1)2 mod 55 = 1
b4 = (b3)2 mod n = (1)2 mod 55 = 1

The last bi 6= 1 in this sequence is b1 = 34 6≡ −1 (mod 55), so 34
is a non-trivial square root of 1 modulo 55.

It follows that gcd(34− 1, 55) = 11 is a prime divisor of n.

5These are possible RSA values since n = 5× 11, φ(n) = 4× 10 = 40, and
ed = 81 ≡ 1 (mod 40).

CPSC 467b, Lecture 9 51/53

Outline Euler RSA modulus Primality tests RSA Security

plaintext

A ciphertext-only attack against RSA

Eve isn’t really interested in factoring n, computing φ(n), or
finding d , except as a means to read Alice’s secret messages.

A problem we would like to be hard is

Definition (ciphertext-only problem)

Given an RSA public key (n, e) and a ciphertext c , find the
plaintext message m.

CPSC 467b, Lecture 9 52/53

Outline Euler RSA modulus Primality tests RSA Security

plaintext

Hardness of ciphertext-only attack

A ciphertext-only attack on RSA is no harder than factoring n,
computing φ(n), or finding d , but it does not rule out the
possibility of some clever way of decrypting messages without
actually finding the decryption key.

Perhaps there is some feasible probabilistic algorithm that finds m
with non-negligible probability, maybe not even for all ciphertexts c
but for some non-negligible fraction of them.

Such a method would “break” RSA and render it useless in
practice.

No such algorithm has been found, but neither has the possibility
been ruled out, even under the assumption that the factoring
problem itself is hard.

CPSC 467b, Lecture 9 53/53

	Outline
	Euler's Theorem
	Generating RSA Modulus
	Finding primes by guess and check
	Density of primes

	Primality Tests
	Strong primality tests
	Weak tests of compositeness
	Reformulation of weak tests of compositeness
	Examples of weak tests

	RSA Security
	Factoring n
	Computing (n)
	Finding d directly
	Finding plaintext

