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Preventing impersonation

A fundamental problem with all of the password authentication
schemes discussed so far is that Alice reveals her secret to Bob
every time she authenticates herself.

This is fine when Alice trusts Bob but not otherwise.

After authenticating herself once to Bob, then Bob can
masquerade as Alice and impersonate her to others.
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Authentication requirement

When neither Alice nor Bob trust each other, there are two
requirements that must be met:

1. Bob wants to make sure that an impostor cannot successfully
masquerade as Alice.

2. Alice wants to make sure that her secret remains secure.

At first sight these seem contradictory, but there are ways for Alice
to prove her identity to Bob without compromising her secret.
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Challenge-response

Challenge-Response Authentication Protocols
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Challenge-response

Challenge-response authentication protocols

In a challenge-response protocol, Bob presents Alice with a
challenge that only the true Alice (or someone knowing Alice’s
secret) can answer.

Alice answers the challenge and sends her answer to Bob, who
verifies that it is correct.

Bob learns the response to his challenge but Alice never reveals her
secret.

If the protocol is properly designed, it will be hard for Bob to
determine Alice’s secret, even if he chooses the challenges with
that end in mind.
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Challenge-response

Challenge-response protocol from a signature scheme

A challenge-response protocol can be built from a digital signature
scheme (SA,VA).

(The same protocol can also be implemented using a symmetric
cryptosystem with shared key k .)

Alice Bob

1.
r←− Choose random string r .

2. Compute s = SA(r)
s−→ Check VA(r , s).
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Challenge-response

Requirements on underlying signature scheme

This protocol exposes Alice’s signature scheme to a chosen
plaintext attack.

A malicious Bob can get Alice to sign any message of his choosing.

Alice had better have a different signing key for use with this
protocol than she uses to sign contracts.

While we hope our cryptosystems are resistant to chosen plaintext
attacks, such attacks are very powerful and are not easy to defend
against.

Anything we can do to limit exposure to such attacks can only
improve the security of the system.
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Challenge-response

Limiting exposure to chosen plaintext attack: try 1
We explore some ways that Alice might limit Bob’s ability to carry
out a chosen plaintext attack.

Instead of letting Bob choose the string r for Alice to sign, r is
constructed from two parts, r1 and r2.

r1 is chosen by Alice; r2 is chosen by Bob. Alice chooses first.

Alice Bob

1. Choose random string r1
r1−→

2.
r2←− Choose random string r2.

3. Compute r = r1 ⊕ r2 Compute r = r1 ⊕ r2

4. Compute s = SA(r)
s−→ Check VA(r , s).
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Challenge-response

Problem with try 1

The idea is that neither party should be able to control r .

Unfortunately, that idea does not work here because Bob gets r1
before choosing r2.

Instead of choosing r2 randomly, a cheating Bob can choose
r2 = r ⊕ r1, where r is the string that he wants Alice to sign.

Thus, try 1 is no more secure against chosen plaintext attack than
the original protocol.
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Challenge-response

Limiting exposure to chosen plaintext attack: try 2

Another possibility is to choose the random strings in the other
order—Bob chooses first.

Alice Bob

1.
r2←− Choose random string r2.

2. Choose random string r1
r1−→

3. Compute r = r1 ⊕ r2 Compute r = r1 ⊕ r2

4. Compute s = SA(r)
s−→ Check VA(r , s).
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Challenge-response

Try 2 stops chosen plaintext attack

Now Alice has complete control over r .

No matter how Bob chooses r2, Alice’s choice of a random string
r1 ensures that r is also random.

This thwarts Bob’s chosen plaintext attack since r is completely
random.

Thus, Alice only signs random messages.
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Challenge-response

Problem with try 2

Unfortunately, try 2 is totally insecure against active eavesdroppers.
Why?

Suppose Mallory listens to a legitimate execution of the protocol
between Alice and Bob.

From this, he easily acquires a valid signed message (r0, s0).
How does this help Mallory?

Mallory sends r1 = r0 ⊕ r2 in step 2 and s = s0 in step 4.

Bob computes r = r1 ⊕ r2 = r0 in step 3, so his verification in
step 4 succeeds.

Thus, Mallory can successfully impersonate Alice to Bob.
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Challenge-response

Further improvements

Possible improvements to both protocols.

1. Let r = r1 · r2 (concatenation).

2. Let r = h(r1 · r2), where h is a cryptographic hash function.

In both cases, neither party now has full control over r .

This weakens Bob’s ability to launch a chosen plaintext attack if
Alice chooses first.

This weakens Mallory’s ability to impersonate Alice if Bob chooses
first.

CPSC 467b, Lecture 16 15/58



Outline Authentication ZKIP PKI

Feige-Fiat-Shamir

Feige-Fiat-Shamir Authentication Protocol
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Feige-Fiat-Shamir

Concept of zero knowledge

In all of the challenge-response protocols above, Alice releases
some partial information about her secret by producing signatures
that Bob could not compute by himself.

The Feige-Fiat-Shamir protocol allows Alice to prove knowledge of
her secret without revealing any information about the secret itself.

Such protocols are called zero knowledge, which we will discuss
shortly.

CPSC 467b, Lecture 16 17/58



Outline Authentication ZKIP PKI

Feige-Fiat-Shamir

Feige-Fiat-Shamir protocol: overview

Alice authenticates herself by successfully completing several
rounds of a protocol that requires knowledge of a secret s.

In a single round, protocol, Bob has at least a 50% chance of
catching an impostor Mallory.

By repeating the protocol t times, the error probability (that is,
the probability that Bob fails to catch Mallory) drops to 1/2t .

This can be made acceptably low by choosing t to be large enough.

For example, if t = 20, then Mallory has only one chance in a
million of successfully impersonating Alice.
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Feige-Fiat-Shamir

Feige-Fiat-Shamir protocol: preparation

The Feige-Fiat-Shamir protocol is based on the difficulty of
computing square roots modulo composite numbers.

I Alice chooses n = pq, where p and q are distinct large primes.

I Next she picks a quadratic residue v ∈ QRn (which she can
easily do by choosing a random element u ∈ Z∗

n and letting
v = u2 mod n).

I Finally, she chooses s to be the smallest square root of v−1

(mod n).1 She can do this since she knows the factorization
of n.

She makes n and v public and keeps s private.

1Note that if v is a quadratic residue, then so is v−1 (mod n).
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Feige-Fiat-Shamir

A simplified one-round FFS protocol
Here’s a simplified one-round version.

Alice Bob

1. Choose random r ∈ Zn.

Compute x = r2 mod n.
x−→

2.
b←− Choose random b ∈ {0, 1}.

3. Compute y = rsb mod n.
y−→ Check x = y2vb mod n.

When both parties are honest, Bob accepts Alice because

x = y2vb mod n.

This holds because

y2vb ≡ (rsb)2vb ≡ r2(s2v)b ≡ x(v−1v)b ≡ x (mod n).
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Feige-Fiat-Shamir

A dishonest Alice

We now turn to the security properties of the protocol when
“Alice” is dishonest, that is, when Mallory is attempting to
impersonate the real Alice.

Theorem
Suppose Mallory doesn’t know a square root of v−1. Then Bob’s
verification will fail with probability at least 1/2.
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Feige-Fiat-Shamir

Proof that Mallory can’t successfully cheat

Proof.
In order for Mallory to successfully fool Bob, he must come up
with x in step 1 and y in step 3 satisfying

x = y2vb mod n.

Mallory sends x in step 1 before Bob chooses b, so he does not
know which value of b to expect.

When Mallory receives b, he responds by sending a value yb to
Bob.

We consider two cases.
(continued. . . )
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Feige-Fiat-Shamir

Proof: case 1

Proof (continued).

Case 1: There is at least one b ∈ {0, 1} for which yb fails to satisfy

x = y2vb mod n.

Since b = 0 and b = 1 each occur with probability 1/2, this means
that Bob’s verification will fail with probability at least 1/2, as
desired.

(continued. . . )
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Feige-Fiat-Shamir

Proof: case 2

Proof (continued).

Case 2: y0 and y1 both satisfy the verification equation, so
x = y2

0 mod n and x = y2
1 v mod n.

We can solve these equations for v−1 to get

v−1 ≡ y2
1 x−1 ≡ y2

1 y−2
0 (mod n)

But then y1y−1
0 mod n is a square root of v−1.

Since Mallory was able to compute both y1 and y0, then he was
also able to compute a square root of v−1, contradicting the
assumption that he doesn’t “know” a square root of v−1.
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Feige-Fiat-Shamir

Successful cheating with probability 1/2

We remark that it is possible for Mallory to cheat with success
probability 1/2.

I He guesses the bit b that Bob will send him in step 2 and
generates a pair (x , y).

I If he guesses b = 0, then he chooses x = r2 mod n and
y = r mod n, just as Alice would have done.

I If he guesses b = 1, then he chooses y arbitrarily and
x = y2v mod n.

He proceeds to send x in step 1 and y in step 3.

The pair (x , y) is accepted by Bob Mallory’s guess of b turns out
to be correct, which will happen with probability 1/2.
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Feige-Fiat-Shamir

A dishonest Bob

We now consider the case of a dishonest Mallory impersonating
Bob, or simply a dishonest Bob who wants to capture Alice’s
secret.

Alice would like assurance that her secret is protected if she follows
the protocol,regardless of what Mallory (Bob) does.

Consider what Mallory knows at the end of the protocol.
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Feige-Fiat-Shamir

Mallory sends b = 0

Suppose Mallory sends b = 0 in step 2.

Then he ends up with a pair (x , y), where y is a random number
and x is its square modulo n.

Neither of these numbers depend in any way on Alice secret s, so
Mallory gets no direct information about s.

It’s also of no conceivable use to Mallory in trying to find s by
other means, for he can compute such pairs by himself without
involving Alice.

If having such pairs would allow him find a square root of v−1,
then he was already able to compute square roots, contrary to the
assumption that finding square roots modulo n is difficult.
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Feige-Fiat-Shamir

Mallory sends b = 1
Suppose Mallory sends b = 1 in step 2.

Now he ends up with the pair (x , y), where x = r2 mod n and
y = rs mod n.

While y might seem to give information about s, observe that y
itself is just a random element of Zn. This is because r is random,
and the mapping r → rs mod n is one-to-one for all s ∈ Z∗

n.
Hence, as r ranges through all possible values, so does rs mod n.

What does Mallory learn from x?

Nothing that he could not have computed himself knowing y , for
x = y2v mod n.

Again, all he ends up with is a random number (y in this case) and
a quadratic residue x that he can compute knowing y .
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Feige-Fiat-Shamir

Mallory learns nothing from (x , y)

In both cases, Mallory ends up with information that he could have
computed without interacting with Alice.

Hence, if he could have discovered Alice’s secret by talking to
Alice, then he could have also done so on his own, contradicting
the hardness assumption for computing square roots.

This is the sense in which Alice’s protocol releases zero knowledge
about her secret.
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Zero Knowledge Interactive Proofs (ZKIP)
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Zero knowlege interactive proofs (ZKIP)

A round of the simplified Feige-Fiat-Shamir protocol is an example
of a so-called zero-knowledge interactive proof.

These are protocols where Bob provably learns nothing about
Alice’s secret.

Here, “learns” means computational knowledge: Anything that
Bob could have computed with the help of Alice he could have
computed by himself without Alice’s help.

We now consider zero knowledge proofs in greater detail.
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Cave

The Secret Cave Protocol

CPSC 467b, Lecture 16 32/58



Outline Authentication ZKIP PKI

Cave

The secret cave protocol
The secret cave protocol illustrates the fundamental ideas behind
zero knowledge without any reference to number theory or
hardness of computation.

Image a cave with tunnels and doors as shown below.

L
R

C

DR

D

DL
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Cave

Secret cave protocol (cont.)

There are three openings to the cave: L, C , and R.

L and R are blocked by exit doors, like at a movie theater, which
can be opened from the inside but are locked from the outside.
The only way into the cave is through passage C .

The cave itself consists of a U-shaped tunnel that runs between L
and R. There is a locked door D in the middle of this tunnel,
dividing it into a left part and a right part.

A short tunnel from C leads to a pair of doors DL and DR through
which one can enter left and right parts of the cave, respectively.
These doors are also one-way doors that allow passage from C into
either the left or right parts of the cave, but once one passes
through, the door locks behind and one cannot return to C .
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Cave

Alice’s proposition

Alice approaches Bob, tells him that she has a key that opens door
D, and offers to sell it to him.

Bob would really like such a key, as he often goes into the cave to
collect mushrooms and would like easy access to both sides of the
cave without having to return to the surface to get into the other
side.

However, he doesn’t trust Alice that the key really works, and Alice
doesn’t trust him with her key until she gets paid.
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Cave

Their conversation

Bob tells Alice.

“Give me the key so I can go down into the cave and try
it to make sure that it really works.”

Alice retorts,

“I’m not that dumb. If I give you the key and you
disappear into the cave, I’ll probably never see either you
or my key again. Pay me first and then try the key.”

Bob answers,

“If I do that, then you’ll disappear with my money, and
I’m likely to be stuck with a non-working key.”
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Cave

How do they resolve their dilemma?

They think about this problem for awhile, and then Alice suggests,

“Here’s an idea: I’ll enter the cave through door C , go
into the left part of the cave, open D with my key, go
through it into the right part of the cave, and then come
out door R. When you see me come out R, you’ll know
I’ve succeeded in opening the door.”

Bob thinks about this and then asks,

“How do I know you’ll go into the left part of the cave?
Maybe you’ll just go into the right part and come out
door R and never go through D.”
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Cave

Alice’s plan

Alice says,

“OK. I’ll go into either the left or right side of the cave.
You’ll know I’m there because you’ll hear door DL or DR

clank when it closes behind me. You then yell down into
the cave which door you want me to come out—L or
R—and I’ll do so. If I’m on the opposite side from what
you request, then I’ll have no choice but to unlock D in
order to pass through to the other side.”
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Cave

Bob’s hesitation

Bob is beginning to be satisfied, but he hesitates.

“Well, yes, that’s true, but if you’re lucky and happen to
be on the side I call out, then you don’t have to use your
key at all, and I still won’t know that it works.”

Alice answers,

“Well, I might be lucky once, but I surely won’t be lucky
20 times in a row, so I’ll agree to do this 20 times. If I
succeed in coming out the side you request all 20 times,
do you agree to buy my key?”

Bob agrees, and they spend the rest of the afternoon climbing in
and out of the cave and shouting.
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Isomorphism

ZKIP for graph isomorphism
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Isomorphism

Graph isomorphism problem

Two undirected graphs G and H are said to be isomorphic if there
exists a bijection π from vertices of G to vertices of H that
preserves edges.

That is, {x , y} is an edge of G iff {π(x), π(y)} is an edge of H.

No known polynomial time algorithm decides, given two graphs G
and H, whether they are isomorphic, but this problem is also not
known to be NP-hard.

It follows that there is no known polynomial time algorithm for
finding the isomorphism π given two isomorphic graphs G and H.
Why?
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Isomorphism

A zero-knowledge proof for isomorphism

Now, suppose G0 and G1 are public graphs and Alice knows an
isomorphism π : G0 → G1.

There is a zero knowledge proof whereby Alice can convince Bob
that she knows an isomorphism π from G0 to G1, without revealing
any information about π.

In particular, she can convince Bob that the graphs really are
isomorphic, but Bob cannot turn around and convince Carol of
that fact.
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Isomorphism

Interactive proof of graph isomorphism

Alice Bob

1. Simultaneously choose a
random isomorphic copy H
of G0 and an isomorphism
τ : G0 → H.

H−→
2.

b←− Choose random b ∈ {0, 1}.
3. If b = 0, let σ = τ .

If b = 1, let σ = τ ◦ π−1.
σ−→ Check σ(Gb) = H.
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Isomorphism

Validity of isomorphism IP

The protocol is similar to the simplified Feige-Fiat-Shamir protocol

If both Alice and Bob follow this protocol, Bob’s check always
succeeds.

I When b = 0, Alice send τ in step 3, and Bob checks that τ is
an isomorphism from G0 to H.

I When b = 1, the function σ that Alice computes is an
isomorphism from G1 to H. This is because π−1 is an
isomorphism from G1 to G0 and τ is an isomorphism from G0

to H. Composing them gives an isomorphism from G1 to H,
so again Bob’s check succeeds.
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Isomorphism

Isomorphism IP is zero knowlege
The protocol is zero knowledge (at least informally) because all
Bob learns is a random isomorphic copy H of either G0 or G1 and
the corresponding isomorphism.

This is information that he could have obtained by himself without
Alice’s help.

What convinces him that Alice really knows π is that in order to
repeatedly pass his checks, the graph H of step 1 must be
isomorphic to both G0 and G1.

Moreover, Alice knows isomorphisms σ0 : G0 → H and
σ1 : G1 → H since she can produce them upon demand.

Hence, she also knows an isomorphism π from G0 to G1, since
σ−1

1 ◦ σ0 is such a function.
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Abstraction

FFS authentication and isomorphism IP

We have seen two examples of zero knowledge interactive proofs of
knowledge of a secret.

In the simplified Feige-Fiat-Shamir authentication scheme, Alice’s
secret is a square root of v .

In the graph isomorphism protocol, her secret is the isomorphism π.

In both cases, the protocol has the form that Alice sends Bob a
“commitment” string x , Bob sends a query bit b, and Alice replies
with a response yb.

Bob then checks the triple (x , b, yb) for validity.
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Abstraction

Comparison (continued)

In both protocols, neither triple (x , 0, y0) nor (x , 1, y1) alone give
any information about Alice’s secret, but y0 and y1 can be
combined to reveal her secret.

In the FFS protocol, y1y−1
0 mod n is a square root of v−1.

(Note: Since v−1 has four square roots, the revealed square root might

not be the same as Alice’s secret, but it is equally valid as a means of

impersonating Alice.)

In the graph isomorphism protocol, y−1
1 ◦ y0 is an isomorphism

mapping G0 to G1.

CPSC 467b, Lecture 16 47/58



Outline Authentication ZKIP PKI

Abstraction

Another viewpoint

One way to view these protocols is that Alice splits her secret into
two parts, y0 and y1.

By randomization, Alice is able to convince Bob that she really has
(or could produce on demand) both parts, but in doing so, she is
only forced to reveal one of them.

Each part by itself is statistically independent of the secret and
hence gives Bob no information about the secret.

Together, they can be used to recover the secret.
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Abstraction

Secret splitting

This is an example of secret splitting or secret sharing, an
important topic in its own right. We have already seen other
examples of secret sharing.

In the one-time pad cryptosystem, the message m is split into two
parts: the key k are the ciphertext c = m ⊕ k .

Bob, knowing both k and c, recovers m from by computing c ⊕ k.

Assuming k is picked randomly, then both k and c are uniformly
distributed random bit strings, which is why Eve learns nothing
about m from k or c alone.

What’s different with zero knowledge proofs is that Bob has a way
to check the validity of the parts that he gets during the protocol.
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Public Key Infrastructure (PKI) and Trust
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The Big Picture

Much of cryptography is concerned with splitting a piece of
information s into a collection of shares s1, . . . , sr .

Certain subsets of shares allow s to be easily recovered; other
subsets are insufficient to allow any useful information about s to
be easily obtained.

In the simplest form, s is split into two shares a and b. Neither
share alone gives useful information about s, but together they
reveal s.
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Examples of information splitting

I One-time pad: s is broken into a key k and a ciphertext c ,
where |k| = |c | and s = k ⊕ c .

I AES: s is broken into a short key k and a long ciphertext c ,
where s = Dk(c).

I Secret splitting: s is broken into equal-length shares s1 and s2,
where s = s1 ⊕ s2.
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Share distribution

A key problem (pun intended) in any use of cryptography is how
the various parties to a protocol obtain their respective shares.

For conventional symmetric cryptography, this is known as the key
distribution problem.

For public key systems, the public shares are provided through a
public key infrastructure (PKI).
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Desired properties of a PKI

A PKI should allow any user to obtain the correct public key (and
perhaps other information) for a user.

The information provided must be correct.

The user must trust that it is correct.

CPSC 467b, Lecture 16 54/58



Outline Authentication ZKIP PKI

Centralized PKI

The first idea for a PKI is a centralized database run by a trusted
3rd party, e.g., the government.

Problems:

I Centralized systems are brittle.

I Difficult to find a single entity that is universally trusted.
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Hierarchy of trust

The most widely used PKI today is based on X.509 certificates and
the hierarchy of trust.

A certificate is a package of information that binds a user to a
public key.

To be trusted, a certificate must be signed by a trusted certificate
authority (CA).

To validate the signature, one must obtain and validate a trusted
certificate of the signing CA.
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Where does trust stop?

The roots of the PKI hierarchy are trusted CA’s that are
well-known.

Your browser is distributed with trusted certificates for the root
CA’s.

Any other certificate can be valided by obtaining a chain of trust
leading to a root certificate.

For this scheme to work, one relies on the CA’s to take reasonable
care not to issue bogus certificates.
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Web of trust

A variant PKI is the web of trust.

Here, the trust relationship is a graph, not a tree.

The basic rule is to trust a certificate if it is signed by one or more
trusted parties.

Anyone can act as a CA, so one must only trust the signatures of
trustworthy signers.
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