
Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

CPSC 467b: Cryptography and Computer
Security

Michael J. Fischer

Lecture 22
April 9, 2012

CPSC 467b, Lecture 22 1/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Oblivious Transfer of One Secret Out of Two

Privacy-Preserving Multiparty Computation

The Millionaire’s Problem

A General Security Model

Private Circuit Evaluation

Homomorphic Encryption

CPSC 467b, Lecture 22 2/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

One-of-two oblivious transfer

In one-of-two oblivious transfer, Alice has two secrets, s0 and s1.

Bob always gets exactly one of the secrets, each with probability
1/2.

Alice does not know which one Bob gets.

The locked box protocol is one way to implement one-of-two
oblivious transfer.

Another is based on a public key cryptosystem (such as RSA) and
a symmetric cryptosystem (such as AES).

This protocol given next does not rely on the cryptosystems being
commutative.

CPSC 467b, Lecture 22 3/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Intuitive idea

In this protocol, Alice chooses two PKS key pairs and sends the
public keys to Bob.

Bob chooses a random key k for a symmetric cryptosystem,
encrypts it with one of Alice’s two keys chosen at random, and
sends the ciphertext to Alice.

Alice decrypts Bob’s ciphertext using both of her decryption keys
and obtains two numbers {k0, k1}. One of them is Bob’s k ; the
other is garbage. She encrypts one secret using k0 and one using
k1 and sends to Bob.

Bob decrypts the one that was encrypted with k.

CPSC 467b, Lecture 22 4/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

A one-of-two OT protocol

Alice Bob

1. Secrets s0 and s1.
Choose two PKS key pairs
(e0, d0) and (e1, d1).

e0,e1−→

2. Choose random key k for sym-
metric cryptosystem (Ê , D̂).
Choose random b ∈ {0, 1}.

c←− Compute c = Eeb
(k).

3. Let ki = Ddi (c), i ∈ {0, 1}.
Choose b′ ∈ {0, 1}.
Let ci = Êki (si⊕b′), i ∈ {0, 1}. c0,c1−→

4. Output s = sb⊕b′ = D̂k(cb).

CPSC 467b, Lecture 22 5/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Analysis

In step 2, Bob encrypts a randomly chosen key k for the symmetric
cryptosystem using one of the PKS encryption keys that Alice sent
him in step 1.

He then selects one of the two encryption keys from Alice, uses it
to encrypt k , and sends the encryption to Alice.

In step 3, Alice decrypts c using both decryption keys d0 and d1 to
get k0 and k1.

One of the ki is Bob’s key k (kb to be specific) and the other is
garbage, but because k is random and she doesn’t know b, she
can’t tell which is k.

CPSC 467b, Lecture 22 6/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Analysis (cont.)

She then encrypts one secret with k0 and the other with k1, using
the random bit b′ to ensure that each secret is equally likely to be
encrypted by the key that Bob knows.

In step 4, Bob decrypts the ciphertext cb using key his key k = kb

to recover the secret s = sb⊕b′ .

He can’t decrypt the other ciphertext c1⊕b since he doesn’t know
the key k1⊕b used to produce it, nor does he know the decryption
key d1⊕b that would allow him to find it from c.

CPSC 467b, Lecture 22 7/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

A subtle security problem

Unfortunately, this protocol has a subtle security problem. We
claimed that Alice doesn’t know Bob’s value b after step 2. But
why should that be true?

c the encryption of k using Ee0 or Ee1 . We would need to know
that outputs of Ee0(k) for random k are indistinguishable from
outputs of Ee1(k). We have no grounds for believing that.

For example, we could take our favorite PKS and construct a new
one where E ′e(k) = e · Ee(k). This is just as secure as the original
since e is already known to the adversary. However, the ciphertext
here reveals the public key used for encryption.

CPSC 467b, Lecture 22 8/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Another 1-of-2 OT protocol using blinding 1

Alice Bob

1. Secrets s0 and s1.
Choose RSA key (n, e, d).
Let yi = Ee(si), i ∈ {0, 1}. n,e,y0,y1−→

2. Choose random b ∈ {0, 1}.
Choose random r ∈ Z∗n.

c←− Compute c = ybEe(r) mod n.

3. Let c ′ = Dd(c) ≡ sbr (mod n).
c′

−→

4. Output c ′r−1 mod n = sb.

1This protocol is adapted from notes by David Wagner, U.C. Berkeley, CS276,
lecture 29, May 2006.

CPSC 467b, Lecture 22 9/49

http://www.cs.berkeley.edu/~daw/teaching/cs276-s06/l29.ps
http://www.cs.berkeley.edu/~daw/teaching/cs276-s06/l29.ps

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Analysis

This protocol is much simpler.

I In step 1, Alice sends Bob encryptions of both secrets.

I In step 2, Bob chooses one of Alice’s encryptions, blinds it,
and returns the result to Alice.

I In step 3, Alice decrypts whatever Bob sends her, which
allows Bob to unblind the decryption and recover the secret
he chose in step 2.

Alice’s other secret is safe assuming semi-honest parties (see
lecture 19) as long as RSA is secure under a limited chosen
ciphertext attack (since that is what Alice permits in step 3).

Bob’s blinding prevents Alice from knowing which secret he
learned.

CPSC 467b, Lecture 22 10/49

http://zoo.cs.yale.edu/classes/cs467/2012s/lectures/ln19.pdf

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Privacy-Preserving Multiparty Computation

CPSC 467b, Lecture 22 11/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Privacy

We have looked at many protocols whose goal is to keep Alice’s
information secret from an adversary, or sometimes even from Bob
himself.

We now look at other protocols whose goal is to control the release
of information about Alice’s secret. Just enough information should
be released to carry out the purpose of the protocol but no more.

This will become clearer with an example.

CPSC 467b, Lecture 22 12/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

The Millionaire’s Problem

CPSC 467b, Lecture 22 13/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

The Millionaire’s Problem

Alice and Bob want to know who is the richer without revealing
how much they are actually worth.

Alice is worth I million dollars; Bob is worth J million dollars.

They want to determine whether or not I ≥ J, but at the end of
the protocol, neither should have learned any more about the other
person’s wealth than is implied by the truth value of the predicate
I ≥ J.

CPSC 467b, Lecture 22 14/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Privacy-preserving multiparty computation

The Millionaire’s problem, introduced by Andy Yao in 1982, began
the study of privacy-preserving multiparty computation.

Another example is vote-counting.

Each voter has an input vi ∈ {0, 1} indicating their no/yes vote on
an issue.

The goal is to collectively compute
∑

vi while maintaining the
privacy of the individual vi .

CPSC 467b, Lecture 22 15/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

A solution to Yao’s problem

For simplicity, assume that I , J ∈ {1, 2, . . . , 10}.

Let N be a security parameter, and assume that Alice has public
and private RSA keys (e, n) and (d , n), respectively, where n = p̄q̄,
and |p̄| ≈ |q̄| ≈ N

2 .

A protocol that intuitively works is shown on the next slide.2

2Adapted from web page “Solution to the Millionaire’s Problem”.

CPSC 467b, Lecture 22 16/49

http://www.proproco.co.uk/million.html

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

The protocol

Alice Bob

1. Choose x of length N.
Let C = E(e,n)(x).

m←− Let m = (C − J + 1) mod n.

2a. Yi = D(d,n)(m+i−1), i ∈ [1, 10].
[Note: YJ = x .]

2b. Choose prime p of length N/2 s.t.
|Zi − Zj | ≥ 2 for i 6= j , where
Zi = (Yi mod p), i ∈ [1, 10].

2c. Let Wi = (Zi + (i > I)) mod p,

i ∈ [1, 10].
p,W1,...,W10−→

3.
result←− result = (WJ ≡ x (mod p)).

CPSC 467b, Lecture 22 17/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Verbal description

Alice decrypts m,m + 1, . . . ,m + 9 to get Y1, . . . ,Y10.

YJ is Bob’s secret, x , but Alice doesn’t know which it is since all
of the Yi ’s “look” random.

She reduces them all mod random prime p to get Z1, . . . ,Z10.
Note that ZJ = x mod p and the other Zi ’s look random.

Finally, she adds 1 (modp) to each of the numbers Zi for which i
is greater than her own wealth I . If she adds 1 to ZJ , this means
that J > I ; if not J ≤ I .

Bob can tell which is the case from the numbers that Alice sends
him in step 2c. Namely, if WJ ≡ x (mod p), this means that 1
was not added, so I ≥ J. Otherwise, I < J.

CPSC 467b, Lecture 22 18/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Detailed description

Alice Bob

1. Choose x of length N.
Let C = E(e,n)(x).

m←− Let m = (C − J + 1) mod n.

2a. Yi = D(d,n)(m+i−1), i ∈ [1, 10].
[Note: YJ = x .]

C = (m + J − 1) mod n is the encryption of Bob’s random secret x .

The numbers in M = {m mod n, . . . , (m + 9) mod n} are
“random-looking,” and all are possible ciphertexts. Why?

Alice knows that C ∈M but doesn’t know which element it is.

After decryption, she knows that some Yi = x but not which one.

CPSC 467b, Lecture 22 19/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Detailed description (cont.)

Alice Bob

2b. Choose prime p of length N/2 s.t.
|Zi − Zj | ≥ 2 for i 6= j , where
Zi = (Yi mod p), i ∈ [1, 10].

The numbers in Y = {Y1, . . . ,Y10} have no particular pattern.
In all likelihood, no pair are at all close together.

Similarly, for most choices of p, no pair of Zj ’s will be close.

CPSC 467b, Lecture 22 20/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Detailed description (cont.)

Alice Bob

2c. Let Wi = (Zi + (i > I)) mod p,

i ∈ [1, 10].
p,W1,...,W10−→

3.
result←− result = (WJ ≡ x (mod p)).

The Wi ’s are distinct and separated by at least 2, so j is the
unique i such that (Wi − x) mod p ∈ {0, 1}. I don’t know why this
uniqueness condition is needed. Perhaps the intention is that Alice
shuffle the Wi before sending.

Since YJ = x , then ZJ ≡ x (mod p).

Hence, if WJ ≡ x (mod p), then J ≤ I , otherwise J > I .

CPSC 467b, Lecture 22 21/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Privacy
Clearly, all that Alice learns from Bob is a set of random-looking
numbers m, . . . ,m + 9, one of which corresponds to Bob’s wealth
J, but she has no way of telling which, since any number in Z∗n is
the RSA encryption of some plaintext message.

Bob on the other hand receives p and W1, . . . ,W10 from Alice in
step 2. However, he does not know any Zi for i 6= J since he
cannot decrypt the corresponding numbers m + i − 1.

He also cannot recover Yi from Wi because of the information loss
implicit in the “mod p” operation. Thus, he also learns nothing
about Alice’s wealth I except for the value of the predicate I ≥ J.

We remark that this protocol works only in the semi-honest model
in which both Alice and Bob follow their protocol, but both will try
to infer whatever they can about the others secrets after the fact.

CPSC 467b, Lecture 22 22/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

A General Security Model

CPSC 467b, Lecture 22 23/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

How can we define multiparty security?

How to define security in a multiparty protocol is far from obvious.

For example, in the millionaire’s problem, there is no way to
prevent either Alice or Bob from lying about their wealth, nor is it
possible to prevent either of them from voluntarily giving up
secrecy by broadcasting their wealth.

Thus, we can’t hope to find a protocol that will prevent all kinds of
cheating.

CPSC 467b, Lecture 22 24/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Ideal versus real protocol security model

What we do instead is to compare a given “real” protocol with a
corresponding very simple “ideal” protocol involving a trusted third
party.

The real protocol should simulate the ideal protocol, much the
same as the simulator of a zero knowledge proof system simulates
the real interaction between prover and verifier.

The real protocol is deemed to be secure if any bad things that can
happen in the real protocol are also possible in the ideal protocol.

CPSC 467b, Lecture 22 25/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Example of an ideal protocol

The ideal protocol for the millionaire’s problem has just two steps:

I Step 1: Alice and Bob send their secrets I and J, respectively,
to the trusted party across a private, secure channel.

I Step 2: the trusted party computes the value of the predicate
I ≥ J and sends the result back to both Alice and Bob.

The goal of the real protocol is that Alice and Bob don’t learn any
more than they could learn in the ideal protocol.

CPSC 467b, Lecture 22 26/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

What does an ideal protocol compute?
What does an ideal multiparty protocol compute? Suppose there
are m parties to the protocol, P1, . . . ,Pm.

Each Pi has a private input xi and receives a private output yi .

We say that F is a (multiparty) functionality if F is a random
process that maps m inputs to m outputs.

As a special case, we say that F is deterministic if the m outputs
are uniquely determined by the m inputs.

The millionaire’s problem can be expressed succinctly as the
problem of securely computing the (deterministic) functionality

F (I , J) = ((I ≥ J), (I ≥ J))

in the semi-honest model.

CPSC 467b, Lecture 22 27/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Simple application of oblivious transfer

Consider the problem of privately evaluating a Boolean function
f (x , y), where x is private to Alice and y is private to Bob. This
corresponds to privately computing the functionality

F (x , y) = (f (x , y), f (x , y)).

We use a slight variant of the one-out-of-two secrets oblivious
transfer protocol presented last time:

In OT2
1, the secrets are numbered s0 and s1. Bob requests and

gets the secret of his choice, but Alice does not learn which secret
he got.

This can be generalized to the case k secrets, where OTk
1 lets Bob

choose one out of k.

CPSC 467b, Lecture 22 28/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

The protocol

Here’s the protocol.

1. Alice, with private input x ∈ {0, 1}, prepares a table T :

y f (x , y)

0 f (x , 0)
1 f (x , 1)

She doesn’t know y , but she does know that the correct value
f (x , y) is in her table. It’s either f (x , 0) or f (x , 1).

2. Bob, with private input y , obtains line y of the table using
OT2

1. Bob outputs f (x , y) without learning x .

3. Bob sends f (x , y) to Alice, who also outputs it.

CPSC 467b, Lecture 22 29/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Remarks

While this functionality seems almost too trivial to be interesting,
it’s really not.

For example, if f (x , y) = x ∧ y and Alice knows x = 0, then the
answer f (x , y) does not tell her Bob’s value y , so it’s important
that the protocol also not leak y in this case.

Similarly, when Bob requests the value corresponding to row 0, he
gets no information about x when the result f (x , 0) = 0 comes
back.

(In fact he knew that already before getting row 0 from Alice.)

CPSC 467b, Lecture 22 30/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Private Circuit Evaluation

CPSC 467b, Lecture 22 31/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Privacy-preserving Boolean function evaluation

We now generalize the simple example to any function z̄ = f (x̄ , ȳ),
where x̄ , ȳ , and z̄ are bit strings of lengths nx , ny , and nz ,
respectively, and f (x̄ , ȳ) is computed by a polynomial size Boolean
circuit with nx + ny input wires and nz output wires.

The corresponding functionality is

F (x̄ , ȳ) = (f (x̄ , ȳ), f (x̄ , ȳ)).

Alice furnishes the (private) input data to the first nx input wires.
Bob furnishes the input data for the remaining ny input wires.

Alice and Bob should learn nothing about each others inputs or the
intermediate values of the circuit, other than what is implied by
their own inputs and the nz output values.

CPSC 467b, Lecture 22 32/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

A Boolean circuit

AND

OR

XNOR

Alice

Bob

σ1

σ2

σ3

σ4

σ5

σ6

σ7

CPSC 467b, Lecture 22 33/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Non-private circuit evaluation

A non-private evaluation of the circuit associates a Boolean value
σw with each wire of the circuit.

The input wires are associated with the corresponding input values.

Let G be a gate with input wires u and v and output wire w that
computes the Boolean function g(x , y).

If σu is the value on wire u and σv the value on wire v , then the
value on wire w is g(σu, σv).

A complete evaluation of the circuit first assigns values to the
input wires and then works its way down the circuit, assigning a
value to the output wire of any gate whose inputs have already
received values.

CPSC 467b, Lecture 22 34/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Private circuit evaluation

To carry out the evaluation privately, we split the value σw on each
wire w into two random shares aw and bw , where σw = aw ⊕ bw .

Neither share alone gives any information about σw , but together
they allow σw to be computed.

After having computed shares for all of the wires, Alice and Bob
exchange their shares aw and bw for each output wire w .

CPSC 467b, Lecture 22 35/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Obtaining the shares

We now describe how Alice and Bob obtain their shares while
maintaining the desired privacy.

There are three cases, depending on whether w is an input wire
controlled by Alice, an input wire controlled by Bob, or the output
wire of a gate G .

CPSC 467b, Lecture 22 36/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Alice’s input wires

1. Input wire controlled by Alice:

Alice knows σw .

She generates a random share aw ∈ {0, 1} for herself and
sends Bob his share bw = aw ⊕ σw .

CPSC 467b, Lecture 22 37/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Bob’s input wires

2. Input wire controlled by Bob:

Bob knows σw .

Alice chooses a random share aw ∈ {0, 1} for herself.

She prepares a table T :

σ T [σ]

0 aw

1 aw ⊕ 1.

Bob requests T [σw] from Alice via OT2
1 and takes his share to

be bw = T [σw] = aw ⊕ σw .

CPSC 467b, Lecture 22 38/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Obtaining shares for gate output wires

3. Output wire of a gate G :
Let G have input wires u, v and compute function g(x , y).
Alice chooses random share aw ∈ {0, 1} for herself.
She computes the table

T [0, 0] = aw ⊕ g(au, av)

T [0, 1] = aw ⊕ g(au, av ⊕ 1)

T [1, 0] = aw ⊕ g(au + 1, av)

T [1, 1] = aw ⊕ g(au + 1, av + 1)

(Equivalently, T [r , s] = aw ⊕ g(au ⊕ r , av ⊕ s).)

Bob requests T [bu, bv] from Alice via OT4
1 and takes his share

to be bw = T [bu, bv] = aw ⊕ g(σu, σv).

CPSC 467b, Lecture 22 39/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Remarks
1. Alice and Bob’s shares for w are both independent of σw .

I Alice’s share is chosen uniformly at random.
I Bob’s share is always the XOR of Alice’s random bit aw with

something independent of aw .

2. This protocol requires ny executions of OT2
1 to distribute the

shares for Bob’s inputs, and one OT4
1 for each gate.3

3. This protocol assumes semi-honest parties.
4. This protocol generalizes readily from 2 to m parties.
5. Bob does not even need to know what function each gate G

computes. He only uses his private inputs or shares to request
the right line of the table in each of the several OT protocols.

3Note: The ny executions of OT2
1 can be eliminated by having Bob produce

the shares for his input wires just as Alice does for hers. Our approach has the
advantage of being more uniform since Alice is in charge of distributing the
shares for all wires.

CPSC 467b, Lecture 22 40/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Private circuit evaluation using garbled circuits

A very different approach to private circuit evaluation is the use of
garbled circuits.

The idea here is that Alice prepares a garbled circuit in which each
wire has associated with it a tag corresponding to 0 and a tag
corresponding to 1.

Associated with each gate is a template that allows the tag that
represent the correct output value to be computed from the tags
representing the input values.

This is all done in a way that keeps hidden the actual values that
the tags represent.

CPSC 467b, Lecture 22 41/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

A sketch of the protocol
After creating the circuit, Alice, who knows all of the tags, uses
OT2

1 to send Bob the tags corresponding to values on the input
wires that he controls.

She also sends him the tags corresponding to the values on the
input wires that she controls.

Bob then evaluates the circuit all by himself, computing the output
tag for each gate from the tags on the input wires.

At the end, he knows the tags corresponding to the output wires.

Alice knows which Boolean values those tags represent, which she
sends to Bob (either before or after he has evaluated the circuit).

In this way, Bob learns the output of the circuit, which he then
sends to Alice.

CPSC 467b, Lecture 22 42/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Role of the tags

The scrambled gate is a 4-line table giving the output tag
corresponding to each of the possible 4 input values.

Each line of the table is encrypted differently.

The input tags to the gate allow the corresponding table item to
be decrypted.

Evaluating the circuit then amounts to decrypting ones way though
the circuit, gate by gate, until getting the output tag.

CPSC 467b, Lecture 22 43/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Remarks

1. The OT2
1 protocol steps used to distribute the tags for the

wires that Bob controls keeps his inputs private from Alice.
The privacy of Alice’s inputs and intermediate circuit values
from Bob relies on the encryption function used to hide the
association between tags and values.

2. The security of the protocol relies on properties of the
encryption function that we have not stated.

3. This protocol requires only ny executions of OT2
1 and hence

should be considerably faster to implement than the
share-based protocol.

4. This protocol also assumes semi-honest parties.

5. Doesn’t easily generalize to more than two parties.

6. Bob doesn’t need to know the function each gate computes.
He only needs the associated templates.

CPSC 467b, Lecture 22 44/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Homomorphic Encryption

CPSC 467b, Lecture 22 45/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Homomorphic property

An encryption function E (·) is said to be homomorphic with
respect to an operator � if one can compute E (x � y) from E (x)
and E (y) without decrypting either ciphertext.

Several well-known cryptosystems have a homomorphic property.

RSA E (x · y) ≡ (xy)e ≡ xe · y e ≡ E (x) · E (y) (mod n).

ElGamal
E (xy) = (g rx+ry , (xy)hrx+ry)

= (g rx , xhrx) · (g ry , yhry)

= E (x) · E (y),

where · on pairs means componentwise
multiplication.

CPSC 467b, Lecture 22 46/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Goldwasser-Micali cryptosystems

Goldwasser-Micali Public key is n = pq, y ∈ QNRn,
E (b) = r2yb mod n for random r .

E (b1) · E (b2) mod n = (r2
1 yb1)(r2

2 yb2) mod n

= (r1r2)2yb1+b2 mod n

While this is not equal to E (b1⊕ b2) = (r1r2)2yb1⊕b2 ,
is equal to r2yb1⊕b2 for some possibly different choice
of r . Hence, E (b1) · E (b2) is a valid encryption of
b1 ⊕ b2, as desired.

CPSC 467b, Lecture 22 47/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Benaloh cryptosystem

Benaloh This generalizes the Goldwasser-Micali scheme to
give

E

(
k∑

i=1

bi

)
=

k∏
i=1

E (bi)

As with Goldwasser-Micali, this is a randomized
encryption scheme, so equality means only that the
product is one of the possible encryptions of the sum
of the bi ’s.

CPSC 467b, Lecture 22 48/49

Outline 1-of-2 OT Multiparty Millionaire’s problem Security model Circuit evaluation Homomorphic

Application to secret ballot elections
Homomorphic encryption can be applied to verifiable secret ballot
elections.

I Each voter i has a vote bi . To cast the vote, the voter
computes ci = E (bi) using the public encryption function of
the voting authority and submits ci . Here we assume the
Benaloh scheme.

I The voting authority publishes the ci ’s for all of the voters,
gives the tally t =

∑
bi , and gives the random string that

shows E (t) =
∏k

i=1 E (bi).

I Any voter can check that her own vote appears and can check
the total, but she cannot determine anyone else’s votes.

I This makes sense in the situation where the voting authority is
trusted to respect the privacy of votes but not to count the
votes correctly.

CPSC 467b, Lecture 22 49/49

	Outline
	Oblivious Transfer of One Secret Out of Two
	Privacy-Preserving Multiparty Computation
	The Millionaire's Problem
	A General Security Model
	Private Circuit Evaluation
	Homomorphic Encryption

