Problem Set 4
Due on Monday, October 27, 2014.

Problem 1: Zero divisors
An element $a \in \mathbb{Z}_n - \{0\}$ is said to be a zero divisor modulo n if $ab \equiv 0 \pmod{n}$ for some $b \in \mathbb{Z}_n - \{0\}$.

(a) Explain why there are no zero divisors in \mathbb{Z}_p when p is prime.
(b) Find a zero divisor in \mathbb{Z}_{33}.
(c) What is the value of the first element to repeat in the sequence
$$ (5^1 \mod 33), (5^2 \mod 33), (5^3 \mod 33), (5^4 \mod 33), \ldots ? $$

In all cases, justify your answers.

Problem 2: Greatest common divisor
The definition of greatest common divisor can be extended naturally to a sequence of numbers (a_1, a_2, \ldots, a_k), not all of which are zero; namely, it is the largest integer $d \geq 1$ such that $d | a_j$ for all $j = 1, 2, \ldots, k$. Describe an efficient algorithm for computing $\gcd(a_1, \ldots, a_k)$, and explain why it computes the correct answer.

Problem 3: Euler’s totient function
Compute $\phi(2200)$. Show your work.

Problem 4: Euler theorem
Compute $3^{699207} \mod 2200$.

Problem 5: Extended Euclidean algorithm
Use the extended Euclidean algorithm to solve the Diaphantine equation $601x - 714y = 1$. Show the resulting table of triples as in slide 15 of lecture 13 notes.
[Note: You may write a program to produce the table if you wish, but these numbers are small enough to make it quite feasible to carry out the computation by hand or with the aid of a pocket calculator.]

Problem 6: Primitive roots
(a) Find a primitive root g of $p = 743$ and use the Lucas test to prove that you have one.
(b) Find a non-trivial number $g \in \mathbb{Z}^*_{743}$ that fails to be a primitive root of p, and use the Lucas test to prove your answer correct.

1Non-trivial means $g \not\in \{1, p - 1\}$.