Pseudorandom Sequence Generation

1 Distinguishability and Bit Prediction

Let \(D \) be a probability distribution on a finite set \(\Omega \). Then \(D \) associates a probability \(P_D(\omega) \) with each each element \(\omega \in \Omega \). We will also regard \(D \) as a random variable that ranges over \(\Omega \) and assumes value \(\omega \in \Omega \) with probability \(P_D(\omega) \).

Definition: An \((S, \ell)\)-pseudorandom sequence generator (PRSG) is a function \(f: S \to \{0, 1\}^\ell \). (We generally assume \(2^\ell \gg |S| \).) More properly speaking, a PRSG is a randomness amplifier. Given a random, uniformly distributed seed \(s \in S \), the PRSG yields the pseudorandom sequence \(z = f(s) \). We use \(S \) also to denote the uniform distribution on seeds, and we denote the induced probability distribution on pseudorandom sequences by \(f(S) \).

The goal of an \((S, \ell)\)-PRSG is to generate sequences that “look random”, that is, are computationally indistinguishable from sequences drawn from the uniform distribution \(U \) on length-\(\ell \) sequences. Informally, a probabilistic algorithm \(A \) that always halts “distinguishes” \(X \) from \(Y \) if its output distribution is “noticeably different” depending whether its input is drawn at random from \(X \) or from \(Y \). Formally, there are many different kinds of distinguishably. In the following definition, the only aspect of \(A \)’s behavior that matters is whether or not it outputs “1”.

Definition: Let \(\epsilon > 0 \), let \(X, Y \) be distributions on \(\{0, 1\}^\ell \), and let \(A \) be a probabilistic algorithm. Algorithm \(A \) naturally induces probability distributions \(A(X) \) and \(A(Y) \) on the set of possible outcomes of \(A \). We say that \(A \) \(\epsilon \)-distinguishes \(X \) and \(Y \) if

\[
|P[A(X) = 1] - P[A(Y) = 1]| \geq \epsilon,
\]

and we say \(X \) and \(Y \) are \(\epsilon \)-indistinguishable by \(A \) if \(A \) does not distinguish them.

A natural notion of randomness for PRSG’s is that the next bit should be unpredictable given all of the bits that have been generated so far.

Definition: Let \(\epsilon > 0 \) and \(1 \leq i \leq \ell \). A probabilistic algorithm \(N_i \) is an \(\epsilon \)-next bit predictor for bit \(i \) of \(f \) if

\[
P[N_i(Z_1, \ldots, Z_{i-1}) = Z_i] \geq \frac{1}{2} + \epsilon
\]

where \((Z_1, \ldots, Z_\ell)\) is distributed according to \(f(S) \).

A still stronger notion of randomness for PRSG’s is that each bit \(i \) should be unpredictable, even if one is given all of the bits in the sequence except for bit \(i \).

Definition: Let \(\epsilon > 0 \) and \(1 \leq i \leq \ell \). A probabilistic algorithm \(B_i \) is an \(\epsilon \)-strong bit predictor for bit \(i \) of \(f \) if

\[
P[B_i(Z_1, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_\ell) = Z_i] \geq \frac{1}{2} + \epsilon
\]

where \((Z_1, \ldots, Z_\ell)\) is distributed according to \(f(S) \).
The close relationship between distinguishability and the two kinds of bit prediction is established in the following theorems.

Theorem 1 Suppose \(\epsilon > 0 \) and \(N_i \) is an \(\epsilon \)-next bit predictor for bit \(i \) of \(f \). Then algorithm \(B_i \) is an \(\epsilon \)-strong bit predictor for bit \(i \) of \(f \), where algorithm \(B_i(z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_\ell) \) simply ignores its last \(\ell - i \) inputs and computes \(N_i(z_1, \ldots, z_{i-1}) \).

Proof: Obvious from the definitions.

Let \(\mathbf{x} = (x_1, \ldots, x_\ell) \) be a vector. We define \(\mathbf{x}^i \) to be the result of deleting the \(i \)-th element of \(\mathbf{x} \), that is, \(\mathbf{x}^i = (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_\ell) \).

Theorem 2 Suppose \(\epsilon > 0 \) and \(B_i \) is an \(\epsilon \)-strong bit predictor for bit \(i \) of \(f \). Then algorithm \(A \) \(\epsilon \)-distinguishes \(f(S) \) and \(U \), where algorithm \(A \) on input \(\mathbf{x} \) outputs 1 if \(B_i(\mathbf{x}^i) = x_i \) and outputs 0 otherwise.

Proof: By definition of \(A \), \(A(\mathbf{x}) = 1 \) precisely when \(B_i(\mathbf{x}^i) = x_i \). Hence, \(P[A(f(S)) = 1] \geq 1/2 + \epsilon \). On the other hand, for \(r = U \), \(P[B_i(r^i) = r_i] = 1/2 \) since \(r_i \) is a uniformly distributed bivalued random variable that is independent of \(r^i \). Thus, \(P[A(U) = 1] = 1/2 \), so \(A \) \(\epsilon \)-distinguishes \(f(S) \) and \(U \).

For the final step in the 3-way equivalence, we have to weaken the error bound.

Theorem 3 Suppose \(\epsilon > 0 \) and algorithm \(A \) \(\epsilon \)-distinguishes \(f(S) \) and \(U \). For each \(1 \leq i \leq \ell \) and \(c \in \{0, 1\} \), define algorithm \(N^c_i(z_1, \ldots, z_{i-1}) \) as follows:

1. Flip coins to generate \(\ell - i + 1 \) random bits \(r_i, \ldots, r_\ell \).
2. Let \(v = \begin{cases} 1 & \text{if } A(z_1, \ldots, z_{i-1}, r_i, \ldots, r_\ell) = 1; \\ 0 & \text{otherwise}. \end{cases} \)
3. Output \(v \oplus r_i \oplus c \).

Then there exist \(m \) and \(c \) for which algorithm \(N^c_m \) is an \(\epsilon/\ell \)-next bit predictor for bit \(m \) of \(f \).

Proof: Let \((Z_1, \ldots, Z_\ell) = f(S) \) and \((R_1, \ldots, R_\ell) = U \) be random variables, and let \(D_i = (Z_1, \ldots, Z_i, R_{i+1}, \ldots, R_\ell) \). \(D_i \) is the distribution on \(\ell \)-bit sequences that results from choosing the first \(i \) bits according to \(f(S) \) and choosing the last \(\ell - i \) bits uniformly. Clearly \(D_0 = U \) and \(D_\ell = f(S) \).

Let \(p_i = P[A(D_i) = 1], 0 \leq i \leq \ell \). Since \(A \) \(\epsilon \)-distinguishes \(D_\ell \) and \(D_0 \), we have \(|p_\ell - p_0| \geq \epsilon \).

Hence, there exists \(m, 1 \leq m \leq \ell \), such that \(|p_m - p_{m-1}| \geq \epsilon/\ell \). We show that the probability that \(N^c_m \) correctly predicts bit \(m \) for \(f \) is \(1/2 + (p_m - p_{m-1}) \) if \(c = 1 \) and \(1/2 + (p_{m-1} - p_m) \) if \(c = 0 \). It will follow that either \(N^0_m \) or \(N^1_m \) correctly predicts bit \(m \) with probability \(1/2 + |p_m - p_{m-1}| \geq \epsilon/\ell \).

Consider the following experiments. In each, we choose an \(\ell \)-tuple \((z_1, \ldots, z_\ell) \) according to \(f(S) \) and an \(\ell \)-tuple \((r_1, \ldots, r_\ell) \) according to \(U \).

Experiment E_0: Succeed if \(A(z_1, \ldots, z_{m-1}, z_m, r_{m+1}, \ldots, r_\ell) = 1 \).

Experiment E_1: Succeed if \(A(z_1, \ldots, z_{m-1}, z_m, r_{m+1}, \ldots, r_\ell) = 1 \).

Experiment E_2: Succeed if \(A(z_1, \ldots, z_{m-1}, z_m, r_{m+1}, \ldots, r_\ell) = 1 \).
Let \(q \) be the probability that experiment \(E \) succeeds, where \(j = 0, 1, 2 \). Clearly \(q = (q_0 + q_1)/2 \) since \(r_m = z_m \) is equally likely as \(r_m = \neg z_m \).

Now, the inputs to \(A \) in experiment \(E_0 \) are distributed according to \(D_m \), so \(p_m = q_0 \). Also, the inputs to \(A \) in experiment \(E_2 \) are distributed according to \(D_m - 1 \), so \(p_m - 1 = q_2 \). Differentiating, we get \(p_m - p_m - 1 = q_0 - q_2 = (q_0 - q_1)/2 \).

We now analyze the probability that \(N_m \) correctly predicts \(m \) of \(f(S) \). Assume without loss of generality that \(A \)'s output is in \(\{0, 1\} \). A particular run of \(N_m(z_1, \ldots, z_m) \) correctly predicts \(z_m \) if

\[
A(z_1, \ldots, z_{m-1}, z_m, r_{m-1}, \ldots, r_{\ell}) + r_m \oplus c = z_m
\]

If \(r_m = z_m \), \((1)\) simplifies to

\[
A(z_1, \ldots, z_{m-1}, z_m, \ldots, r_{\ell}) = c,
\]

and if \(r_m = \neg z_m \), \((1)\) simplifies to

\[
A(z_1, \ldots, z_{m-1}, \neg z_m, \ldots, r_{\ell}) = \neg c.
\]

Let \(\text{OK}_m^c \) be the event that \(N_m(Z_1, \ldots, Z_m) = Z_m \), i.e., that \(N_m \) correctly predicts \(m \) for \(f \). From \((2)\), it follows that

\[
P[\text{OK}_m^c \mid R_m = Z_m] = \begin{cases} q_0 & \text{if } c = 1 \\ (1 - q_0) & \text{if } c = 0 \end{cases}
\]

for in that case the inputs to \(A \) are distributed according to experiment \(E_0 \). Similarly, from \((3)\), it follows that

\[
P[\text{OK}_m^c \mid R_m = \neg Z_m] = \begin{cases} q_1 & \text{if } \neg c = 1 \\ (1 - q_1) & \text{if } \neg c = 0 \end{cases}
\]

for in that case the inputs to \(A \) are distributed according to experiment \(E_1 \). Since \(P[R_m = Z_m] = P[R_m = \neg Z_m] = 1/2 \), we have

\[
P[\text{OK}_m^c] = \frac{1}{2} \cdot P[\text{OK}_m^c \mid R_m = Z_m] + \frac{1}{2} \cdot P[\text{OK}_m^c \mid R_m = \neg Z_m]
\]

\[
= \begin{cases} q_0/2 + (1 - q_1)/2 = 1/2 + p_m - p_m - 1 & \text{if } c = 1 \\ q_1/2 + (1 - q_0)/2 = 1/2 + p_m - 1 - p_m & \text{if } c = 0 \end{cases}
\]

Thus, \(P[\text{OK}_m^c] = 1/2 + |p_m - p_m - 1| \geq \epsilon/\ell \) for some \(c \in \{0, 1\} \), as desired.

\[\square\]

2 BBS Generator

We now give a PRSG due to Blum, Blum, and Shub for which the problem distinguishing its outputs from the uniform distribution is closely related to the difficulty of determining whether a number with Jacobi symbol 1 is a quadratic residue modulo a certain kind of composite number called a Blum integer. The latter problem is believed to be computationally hard. First some background.

A Blum prime is a prime number \(p \) such that \(p \equiv 3 \pmod{4} \). A Blum integer is a number \(n = pq \), where \(p \) and \(q \) are Blum primes. Blum primes and Blum integers have the important property that every quadratic residue \(a \) has a square root \(y \) which is itself a quadratic residue. We call such a \(y \) a principal square root of \(a \) and denote it by \(\sqrt{a} \).
Lemma 4 Let \(p \) be a Blum prime, and let \(a \) be a quadratic residue modulo \(p \). Then \(y = a^{(p+1)/4} \mod p \) is a principal square root of \(a \) modulo \(p \).

Proof: We must show that, modulo \(p \), \(y \) is a square root of \(a \) and \(y \) is a quadratic residue. By the Euler criterion [Theorem 2, handout 15], since \(a \) is a quadratic residue modulo \(p \), we have \(a^{(p-1)/2} \equiv 1 \mod p \). Hence, \(y^2 = (a^{(p+1)/4})^2 \equiv a a^{(p-1)/2} \equiv a \mod p \), so \(y \) is a square root of \(a \) modulo \(p \). Applying the Euler criterion now to \(y \), we have

\[
y^{(p-1)/2} \equiv (a^{(p+1)/4})^{(p-1)/2} \equiv (a^{(p-1)/2})^{(p+1)/4} \equiv 1^{(p+1)/4} \equiv 1 \mod p.
\]

Hence, \(y \) is a quadratic residue modulo \(p \). \qed

Theorem 5 Let \(n = pq \) be a Blum integer, and let \(a \) be a quadratic residue modulo \(n \). Then \(a \) has four square roots modulo \(n \), exactly one of which is a principal square root.

Proof: By Lemma 4, \(a \) has a principal square root \(u \) modulo \(p \) and a principal square root \(v \) modulo \(q \). Using the Chinese remainder theorem, we can find \(x \) that solves the equations

\[
x \equiv \pm u \pmod p \\
x \equiv \pm v \pmod q
\]

for each of the four choices of signs in the two equations, yielding 4 square roots of \(a \) modulo \(n \). It is easily shown that the \(x \) that results from the +, + choice is a quadratic residue modulo \(n \), and the others are not. \qed

From Theorem 4 it follows that the mapping \(b \mapsto b^2 \pmod n \) is a bijection from the set of quadratic residues modulo \(n \) onto itself. (A bijection is a function that is 1–1 and onto.)

Definition: The Blum-Blum-Shub generator BBS is defined by a Blum integer \(n = pq \) and an integer \(\ell \). It is a \((\mathbb{Z}_n^*, \ell) \)-PRSG defined as follows: Given a seed \(s_0 \in \mathbb{Z}_n^* \), we define a sequence \(s_1, s_2, s_3, \ldots, s_\ell \), where \(s_i = s_{i-1}^2 \pmod n \) for \(i = 1, \ldots, \ell \). The \(\ell \)-bit output sequence is \(b_1, b_2, b_3, \ldots, b_\ell \), where \(b_i = s_i \pmod 2 \).

Note that any \(s_m \) uniquely determines the entire sequence \(s_1, \ldots, s_\ell \) and corresponding output bits. Clearly, \(s_m \) determines \(s_{m+1} \) since \(s_{m+1} = s_m^2 \pmod n \). But likewise, \(s_m \) determines \(s_{m-1} \) since \(s_{m-1} = \sqrt{s_m} \), the principal square root of \(s_m \) modulo \(n \), which is unique by Theorem 5.

3 Security of BBS

Theorem 6 Suppose there is a probabilistic algorithm \(A \) that \(\epsilon \)-distinguishes \(\text{BBS}(\mathbb{Z}_n^*) \) from \(U \). Then there is a probabilistic algorithm \(Q(x) \) that correctly determines with probability at least \(\epsilon' = \epsilon/\ell \) whether or not an input \(x \in \mathbb{Z}_n^* \) with Jacobi symbol \(\left(\frac{x}{n} \right) = 1 \) is a quadratic residue modulo \(n \).

Proof: From \(A \), one easily constructs an algorithm \(\hat{A} \) that reverses its input and then applies \(A \). \(\hat{A} \) \(\epsilon \)-distinguishes the reverse of \(\text{BBS}(\mathbb{Z}_n^*) \) from \(U \). By Theorem 3 there is an \(\epsilon' \)-next bit predictor \(N_m \) for bit \(\ell - m + 1 \) of \(\text{BBS} \) reversed. Thus, \(N_m(b_\ell, b_{\ell-1}, \ldots, b_{m+1}) \) correctly outputs \(b_m \) with probability at least \(1/2 + \epsilon' \), where \((b_1, \ldots, b_\ell) \) is the (unreversed) output from \(\text{BBS}(\mathbb{Z}_n^*) \).
We now describe algorithm $Q(x)$, assuming $x \in \mathbb{Z}_n^*$ and $(\frac{x}{n}) = 1$. Using x as a seed, compute $(b_1, \ldots, b_\ell) = BBS(x)$ and let $b = N_m(b_{\ell-m}, b_{\ell-m-1}, \ldots, b_1)$. Output “quadratic residue” if $b = x \mod 2$ and “non-residue” otherwise.

To see that this works, observe first that $N_m(b_{\ell-m}, b_{\ell-m-1}, \ldots, b_1)$ correctly predicts b_0 with probability at least $\frac{1}{2} + \epsilon'$, where $b_0 = (\sqrt{x^2} \mod n) \mod 2$. This is because we could in principle let $s_{m+1} = x^2 \mod n$ and then work backwards defining $s_m = \sqrt{s_{m+1}} \mod n$, $s_{m-1} = s_m \mod n$, ..., $s_0 = \sqrt{s_1} \mod n$. It follows that $b_0, \ldots, b_{\ell-m}$ are the last $\ell - m + 1$ bits of $BBS(s_0)$, and b_0 is the bit predicted by N_m.

Now, x and $-x$ are clearly square roots of s_{m+1}. We show that they both have Jacobi symbol 1. Since $(\frac{x}{n}) = (\frac{\sqrt{x}}{p}) \cdot (\frac{\sqrt{x}}{q}) = 1$, then either $(\frac{x}{p}) = (\frac{\sqrt{x}}{q}) = 1$ or $(\frac{x}{p}) = (\frac{\sqrt{x}}{q}) = -1$. But because p and q are Blum primes, -1 is a quadratic non-residue modulo both p and q, so $(\frac{-1}{p}) = (\frac{-1}{q}) = -1$. It follows that $(\frac{x}{n}) = 1$. Hence, $x = \pm \sqrt{s_{m+1}}$, so exactly one of x and $-x$ is a quadratic residue.

Since n is odd, $x \mod n$ and $-x \mod n$ have opposite parity. Hence, x is a quadratic residue iff x and $\sqrt{s_{m+1}}$ have the same parity. But N_m outputs $\sqrt{s_{m+1}} \mod 2$ with probability $1/2 + \epsilon'$, so it follows that Q correctly determines the quadratic residuosity of its argument with probability $1/2 + \epsilon'$.