A Turing-Machine model of Computation

Deterministic k-tape Turing machine M.

There is one read-only input tape (on top) and $k-1$ read-write work/output tapes. M is a triple Γ, Q, δ that is defined as follows:

- Γ is the tape alphabet, a finite set of symbols. Assume \Box ("blank" symbol), \triangleright ("start" symbol), 0 and 1 are four distinct elements of Γ.

- Q is the state set, a finite set of states that M’s control register can be in. Assume q_{start} and q_{halt} are two distinct states in Q.

- δ is the transition function, a finite table that describes the rules (or program) by which M operates:

$$\delta : Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times (L, S, R)^k.$$
\[\delta(q, (\sigma_1, ..., \sigma_k)) = (q', (\sigma'_2, ..., \sigma'_k), (z_1, ..., z_k)) \] means that, if \(M \) is in state \(q \), and the read (or read/write) tape heads are pointing at the cells containing \(\sigma_1, ..., \sigma_k \), then the following “step” of the computation is performed:

- the read/write tape symbols \(\sigma_2, ..., \sigma_k \) are replaced by \(\sigma'_2, ..., \sigma'_k \);
- tape head \(i \) moves left, stays in place or moves right, depending on whether \(z_i \) is in \(L, S \) or \(R \);
- the control-register state is changed to \(q' \).

When \(M \) starts its execution on input \(x = \sigma_1, ..., \sigma_n \), we have

- \(q = q_{\text{start}} \)
- input tape

\[\triangleright \sigma_1 \sigma_2 \cdots \sigma_n \square \square \cdots \]

- all other tapes

\[\triangleright \square \square \square \square \square \square \cdots \]

Meaning of \(q_{\text{halt}} \):

\[\delta(q_{\text{halt}}, (\sigma_1, ..., \sigma_k)) = (q_{\text{halt}}, (\sigma_2, ..., \sigma_k), S^k) \quad \forall (\sigma_1, ..., \sigma_k). \]

Designate one of the read/write tapes as "the output tape".

Turing machine \(M \) "computes the function \(f' \)", if for all \(x \in \Gamma^* \) the execution of \(M \) on input \(x \) eventually reaches the state \(q_{\text{halt}} \), and when it does, the contents of \(M \)'s output tape is \(f(x) \).

\(M \) "runs in time \(T' \)" if for all \(n \) and all \(x \in \Gamma^n \) \(M \) halts after at most \(T(n) \) steps.