Answer to Question 1:
Justifications are presented for educational purposes only. They were not required for full credit.
a) True. A checker is just a particular type of oracle proof system.
b) Unknown

c) True. If L is in BPP / poly, it is accepted by a probabilistic polynomial-time machine M that takes polynomial-length advice $\{\alpha_n\}_{n \geq 0}$. M can be simulated by a deterministic polynomial-time machine M' that takes polynomial-length advice $\{\beta_n\}_{n \geq 0}$. So M' with advice $\{\alpha_n \cdot \beta_n\}_{n \geq 0}$ accepts L.
d) False. BPP is contained in $\Sigma_P^2 \cap \Pi_P^2$ (the Sipser-Gacs Theorem), but $\text{BPP} / \text{poly} = \text{P} / \text{poly}$ contains undecidable languages, and $\Sigma_P^2 \cap \Pi_P^2$ does not.
e) Unknown

Answer to Question 2:
a) See Definition 8.26. Basically, a checker for L is an oracle proof system for L (as in MIP) in which the oracle that causes the base machine to accept all $x \in L$ is an L oracle. In an ordinary one-prover interactive proof system for L, the correct prover that causes the verifier to accept whenever $x \in L$ is not restricted to the power conferred by an L oracle. Furthermore, the “cheating” prover that tries to make the verifier accept when $x \not\in L$ can be adaptive; by contrast, in Definition 8.26, the program that is incorrect on input x (when the checker is supposed to reject) is not adaptive.
b) As explained in Section 8.6.1, the interactive proof system for TQBF is a checker, because the prover can be implemented using a TQBF oracle.1 By contrast, in the interactive proof system for coSAT, we do not know how to do the algebraic computations required of the prover simply by making SAT queries.

1In fact, the prover in any interactive proof system can be implemented using a TQBF oracle, because TQBF is \text{PSPACE}-complete, and we showed in HW exercise 8.1 that optimal prover answers can be computed in polynomial space.
Answer to Question 3:

a) \[a : T \mapsto 1 \]
\[a : F \mapsto 0 \]
\[a : x_i \mapsto X_i \]
\[a : \neg x_i \mapsto (1 - X_i) \]
\[a : \phi_1 \lor \phi_2 \mapsto a(\phi_1) + a(\phi_2) - a(\phi_1) \cdot a(\phi_2) \]
\[a : \phi_1 \land \phi_2 \mapsto a(\phi_1) \cdot a(\phi_2) \]

b) The degree of \(h_1 \) is \(O(m) \), and the degree of \(h_2 \) is \(O(m \cdot 2^{\lceil n/2 \rceil}) \).

c) See Formula 8.13 and the discussion immediately following it. The linearization operator is used for degree reduction.

Answer to Question 4:

a) Using formula (17.6), we can add 1 to the output of algorithm \(B \) to flip the parity of the number of satisfying assignments. That is,
\[\phi \in \text{coSAT} \rightarrow \text{Prob}[(B(\phi) + 1) \in \oplus SAT] \geq 1 - 2^{-m} \]
\[\phi \notin \text{coSAT} \rightarrow \text{Prob}[(B(\phi) + 1) \in \oplus SAT] \leq 2^{-m} \]

b) See Lemma 17.21. The reduction is oblivious in the sense that the formula \(\tau \) depends only on the number \(n \) of inputs to the function \(\beta \) and not on the function itself.

c) An instance \(\phi \) of \(\Sigma_c^{\text{SAT}} \) is of the form
\[\phi(x_1, x_2, \ldots, x_c) = \exists x_1 \forall x_2 \cdots Q_c x_c \phi'(x_1, x_2, \ldots, x_c) \]
where each of the \(x_i \)'s is a string of boolean variables, and \(Q_c \) is \(\exists \) if \(c \) is odd and \(\forall \) if \(c \) is even. Note that \(\phi \) is of the form \(\exists x_1 \psi(x_1) \), where \(\psi(x_1) \) is an instance of \(\Pi_{c-1}^{\text{SAT}} \). By our inductive hypothesis, for any \(m \in N \), there is a probabilistic, polynomial-time algorithm \(f \) such that, for any \(x_1 \), with probability at least \(1 - 2^{-m} \), \(\psi(x_1) \in \Pi_{c-1}^{\text{SAT}} \) if and only if \(\rho(z, x_1) \in \oplus \text{SAT} \), where \(\rho(z, x_1) = (f(\psi(x_1)))(z) \).

Our desired function \(\beta(x_1) \) is \(\oplus \rho(z, x_1) \). That is, \(\beta(x_1) = 1 \) if and only if the number of \(z \) that satisfy \(\rho(z, x_1) \) is odd.

Answer to Question 5:

a) See Definition 8.10 and the paragraph immediately following. In particular, \(\text{AM} \) is the class of languages with interactive proof systems in which the verifier sends a random string \(r \), the prover responds with a message \(m \), and the verifier’s decision is obtained by applying a deterministic polynomial-time function to \(r, m \), and the input \(x \). If \(x \) is (resp., is not) in the language, then the verifier accepts (resp., rejects) with probability at least \(\frac{2}{3} \).

b) We saw in HW exercise 8.3 that \(\text{AM}[2] = \text{BP} \cdot \text{NP} \), which is defined as \(\{ L : L \leq_r 3\text{SAT} \} \).

Note that \(\text{BP} \cdot \text{NP} \subseteq \text{BPP}^{\text{NP}} \). (Because \(\text{BPP}^{\text{NP}} \) contains \(\text{coNP} \), this inclusion is believed to be proper – see HW exercise 7.8.) By the Sipser-Gacs Theorem, \(\text{BPP} \subseteq \Sigma_2^P \), and the proof of Sipser-Gacs relativizes. Therefore, \(\text{BP} \cdot \text{NP} \subseteq \text{BPP}^{\text{NP}} \subseteq (\Sigma_2^P)^{\text{NP}} = \Sigma_3^P \).