Throughout this assignment, if a proof or step of a proof follows directly from a definition given or a theorem proven in class or in a reading assignment, then you may simply say that, i.e., you need not reproduce proofs given in class or in the reading.

Problem 1 (20 points):
Prove that 2SAT is in NL.

Problem 2 (15 points):
Let BIPARTITE be the set of all undirected graphs \(G = (V, E) \) such that \(V \) is the disjoint union \(V = V_1 \sqcup V_2 \) of two vertex sets \(V_1 \) and \(V_2 \), and all edges in \(E \) have one endpoint in \(V_1 \) and one endpoint in \(V_2 \). Prove that BIPARTITE is in NL.

Problem 3(a) (5 points):
Let \(k \geq 1 \) be a positive constant. Prove that \(\text{NP} \not\subseteq \text{DTIME}(n^k) \).

Problem 3(b) (15 points):
Prove that \(\text{NP}^{\text{EXPCOM}} \not\subseteq \text{DTIME}^{\text{EXPCOM}}(n^k) \). Here, \(\text{EXPCOM} \) is the oracle used in class on Feb. 4, 2016, in the proof of the Baker-Gill-Solovay theorem, and \(\text{DTIME}^A(n^k) \) is the class of sets recognizable by deterministic TMs that run in time \(O(n^k) \) and have access to oracle \(A \).

Problem 4 (20 points):
Consider the complexity classes \(\text{DTIME}(n^2) \), \(\text{NTIME}(n^2) \), \(\text{NSPACE}(n^5) \), and \(\text{DSPACE}(n^8) \). For 4 points each, state and prove 5 containment relationships between pairs of these classes.

Problem 5 (10 points):
Prove that \(\text{NTIME}(n^k) \not\subseteq \text{PSPACE} \), for any constant \(k \geq 1 \). Does this imply that \(\text{NP} \not\subseteq \text{PSPACE} \)? Briefly justify your answer.

Problem 6 requires you to work through a proof of the Gap Theorem.

Let \(M_0, M_1, M_2, \ldots \) be an enumeration of all Turing Machines, e.g., the one in Figure 1.7 of your textbook. Let \(\Gamma_i \) be the tape alphabet of \(M_i \).

For integers \(i, k \geq 0 \), define the following property \(P(i, k) \): “Any machine among \(M_0, M_1, \ldots, M_i \), on any input of length \(i \), will halt in fewer than \(k \) steps, halt after more than \(2^k \) steps, or not halt at all” – that is, on an input of length \(i \), none of these machines will halt immediately after a number of steps that is in the interval \([k, 2^k]\).

Define \(f(i), i \geq 0 \), as follows. Let \(k_0 = 2i \), and, for \(j > 0 \), let \(k_j = 2^{k_{j-1}} + 1 \). We take \(N(i) \) to be \(\sum_{j=0}^{i} |\Gamma_j|^i \), i.e., the total number of inputs of length \(i \) to the first \(i + 1 \) machines \(M_0, \ldots, M_i \). Then \(f(i) \) is defined to be \(k_\ell \), where \(\ell \) is the largest integer less than or equal to \(N(i) \) such that \(P(i, k_\ell) \) is true.
Problem 6(a) (5 points):
Prove that f is well defined, i.e., that there must be an $\ell \leq N(i)$ such that $P(i, k_\ell)$ is true.

Problem 6(b) (10 points):
Prove that any set in $\text{DTIME}(2^{f(n)})$ is in $\text{DTIME}(f(n))$.