HW6, CPSC 468/568, Due April 26, 2016

Throughout this assignment, if a proof or step of a proof follows directly from a definition given or a theorem proven in class or in a reading assignment, then you may simply say that, i.e., you need not reproduce proofs given in class or in the reading.

Problem 1 (20 points):
Prove that, for any \(f \) in \(\#P \) and any constant \(\epsilon > 0 \), the function \(f \) can be \(\epsilon \)-approximated in \(FP^{\Sigma^p_2} \). That is, prove that there is a function \(g \) that is an \(\epsilon \)-approximation of \(f \) and a deterministic polynomial-time oracle machine \(M \) such that \(M^O \) computes \(g \), where \(O \) is a \(\Sigma^p_2 \)-complete set.

(Hint: Use the ideas introduced in the proof that \(BPP \subseteq \Sigma^p_2 \cap \Pi^p_2 \).)

Problem 2 (20 points):
Consider the set \(C \) of circuits over the basis consisting of \(\neg \) and unbounded fan-in \(\land \) and \(\lor \). The non-uniform complexity class \(AC^0 \) consists of all languages accepted by families of polynomial-size, constant-depth circuits in \(C \); that is, \(L \in AC^0 \) if and only if it is accepted by a circuit family \(\{C_n\}_{n\geq 0} \) such that \(\{C_n\} \subseteq C \), \(\text{size}(C_n) \) is \(n^{O(1)} \), and \(\text{depth}(C_n) \) is \(O(1) \). A Boolean function \(f \) on \(\{0,1\}^n \) is symmetric if and only if, for any permutation \(\sigma \in S_n \),

\[
f(x_1,\ldots,x_n) = f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).
\]

Prove that, for any \(L \in AC^0 \), there is a constant \(k \) such that \(L \) is accepted by a circuit family \(\{C'_n\}_{n\geq 0} \) in which the output gate of every \(C'_n \) is a symmetric function of fan-in \(n^{O(\log^k n)} = 2^{O(\log^{k+1} n)} \), each of whose inputs is an \(\land \) of \(O(\log^k n) \) input variables or their negations.

(Hint: Consider “scaling down” the proof of Toda’s Theorem.)

Problem 3 (30 points):
The language \(L \) is in the complexity class \(\text{Few} \) if there is a nondeterministic polynomial-time machine \(M \), a polynomial-time predicate \(Q \), and a polynomial \(p \) such that, for every \(x \in \{0,1\}^* \),

\[
\text{acc}_M(x) \leq p(|x|), \quad x \in L \text{ if and only if } Q(x, \text{acc}_M(x)), \quad \text{where } \text{acc}_M(x) \text{ is the number of accepting paths of } M \text{ on input } x.
\]

Show that \(\text{Few} \subseteq \text{D}^{\text{FewP}} \), where \(\text{FewP} \) is defined as in HW5, problem 6.

Problem 4 (10 points):
The language \(L \) is in the complexity class \(\text{C=P} \) if there is a nondeterministic polynomial-time machine \(M \) and a polynomial-time computable function \(f \) such that, for every \(x \in \{0,1\}^* \), \(x \in L \) if and only if \(\text{acc}_M(x) = f(x) \). Prove that \(\text{C=P} \subseteq \text{PP} \).

Problem 5 (20 points):
For any positive integer \(k \), the language \(L \) is in the complexity class \(\text{MOD}_k \text{P} \) if there is a nondeterministic polynomial-time \(M \) such that, for any \(x \in \{0,1\}^* \), \(x \) is in \(L \) if and only if \(\text{acc}_M(x) \not\equiv 0 \pmod{k} \). So \(\oplus \text{P} \) is \(\text{MOD}_2 \text{P} \). For any subsets \(A \) and \(B \) of \(\{0,1\}^* \), we define the join \(A \oplus B \) as the union of \(\{0x \mid x \in A\} \) and \(\{1y \mid y \in B\} \). For five points each, prove that, if \(k \) is prime, then \(\text{MOD}_k \text{P} \) is closed under union, intersection, complement, and join.