Boolean Circuits and the Karp-Lipton Theorem

This material was presented in class on February 23, 2016.

Before presenting the proof of the Karp-Lipton Theorem we covered Theorem 2.18 and Definitions 6.1, 6.2, and 6.5. These items are all presented clearly in the textbook and won’t be repeated here.

Karp-Lipton Theorem: If \(\text{NP} \subseteq \text{P}/\text{poly} \), then \(\text{PH} = \Sigma_2^P \).

Proof: It suffices to show that, if \(\text{NP} \subseteq \text{P}/\text{poly} \), then \(\Pi_2 \text{SAT} \in \Sigma_2^P \).

Recall that \(\Pi_2 \text{SAT} \) consists of all true QBFs of the form

\[
∀u \in \{0, 1\}^n \exists v \in \{0, 1\}^n \phi(u, v) = 1,
\]

where \(\phi \) is a quantifier-free boolean formula on \(2^n \) variables with \(m \) clauses.

Note that (1) is of the form \(∀u \in \{0, 1\}^n \text{SAT} \); that is, for any fixed \(\phi \) and \(u \), the part of (1) that begins with \(∃ \) is just \(∃v \in \{0, 1\}^n φ_u(v) = 1 \), where \(φ_u(·) \) is the formula \(φ(·, ·) \) with the first \(n \) boolean variables instantiated as in \(u \) and the last \(n \) boolean variables left free. This is, of course, a SAT instance.

Our hypothesis is that \(\text{SAT} \in \text{P}/\text{poly} \). So there is a polynomial \(p \) and a \(p(n, m) \)-sized circuit family \(\{C_{n,m}\} \) such that

\[
∀\phi, u \; C_{n,m}(\phi, u) = 1 \iff ∃v \in \{0, 1\}^n φ_u(v) = 1.
\]

Here, “\(C_{n,m}(\phi, u) \)” means “the circuit \(C_{n,m} \) evaluated on the SAT instance determined by \(\phi \) and \(u \).”

Recall that there is a polynomial-sized circuit family \(\{C'_{n,m}\} \) that reduces the search problem for SAT to the decision problem for SAT. Given an oracle that decides SAT, a circuit \(C'_{n,m} \) can produce an assignment that satisfies a formula, provided such an assignment exists. Whenever \(C'_{n,m} \) needs to make an oracle call on a \(k \)-variable, \(ℓ \)-clause formula and feed the answer to a gate \(g \), it can instead feed that formula to \(C_{k,ℓ} \) and feed the output to \(g \). There will be a polynomial number \(q(n) \) of such calls, the sizes \((k_1, ℓ_1), \ldots, (k_{q(n)}, ℓ_{q(n)}) \) are all polynomial in \((n, m) \), and the circuits \(C_{k_i,ℓ_i} \) are of size polynomial in \(k_i \) and \(ℓ_i \). Therefore, under the hypothesis that \(\text{SAT} \in \text{P}/\text{poly} \), we can “compose” these circuit families \(\{C_{n,m}\} \) and \(\{C'_{n,m}\} \) to get a polynomial-sized circuit family \(\{D_{n,m}\} \) that, given a SAT instance as input, produces a satisfying assignment if one exists. (We need the hypothesis to assert the existence of \(\{C_{n,m}\} \) but not to assert the existence of \(\{C'_{n,m}\} \).) Let \(w(n, m) \) be the (polynomial) number of bits needed to encode \(D_{n,m} \). Denote by \(D_{n,m}(\phi, u) \) the output of \(D_{n,m} \) on the formula \(φ_u \) determined by \(\phi \) and \(u \).

Now consider the following \(\Sigma_2^P \) expression:

\[
∃D_{n,m} \in \{0, 1\}^{w(n, m)} ∀u \in \{0, 1\}^n \; φ_u(D_{n,m}(\phi, u)) = 1.
\]

We have just argued that, if (1) is true and \(\text{NP} \subseteq \text{P}/\text{poly} \), then (2) is true. On the other hand, if (1) is false, then (2) is also false, regardless of whether \(\text{NP} \subseteq \text{P}/\text{poly} \). Thus, under the assumption that \(\text{NP} \subseteq \text{P}/\text{poly} \), the \(\Pi_2 \text{SAT} \) formula (1) is equivalent to the \(\Sigma_2^P \) expression (2).