
The Baker-Gill-Solovay Theorem
This is the proof that was presented in class on September 16, 2010. Throughout, points

that you are encouraged to think through and justify in detail are marked by “(WHY?).”
This lecture started with the definition of an oracle Turing Machine; see Arora and

Barak’s Definition 3.4. Similarly, for any oracle O, the class of languages recognizable by
deterministic (respectively, nondeterministic), polynomial-time oracle TMs that are given
access to oracle O is denoted PO (respectively, NPO).

We first note that there is a set A such that PA = NPA. One such set is EXPCOM, which
is defined as {(M, x, 1n) such that M accepts x in time at most 2n}. It is fairly easy to see
that PEXPCOM = NPEXPCOM = EXP , where EXP is the union, over all nonnegative integers
c, of DTIME(2nc

). By definition, PEXPCOM ⊆ NPEXPCOM, because every deterministic
polynomial-time oracle TM is also a nondeterministic polynomial-time oracle TM. To see
that EXP ⊆ PEXPCOM, let S be an arbitrary set in EXP, and let M be a deterministic TM
that runs in time 2nc

and recognizes S. A deterministic polynomial-time oracle TM with
access to EXPCOM can determine whether x is in S with a single query to an EXPCOM
oracle: If x ∈ {0, 1}t, the query is (M, x, 1tc); note that the length of this query is polynomial
in t, as required. Finally, note that NPEXPCOM ⊆ EXP , because the computation of
a nondeterministic polynomial-time machine with access to an EXPCOM oracle can be
simulated deterministically in singly exponential time. Let W be a nondeterministic machine
that runs in time p1(n), where p1 is a polynomial, and has access to an EXPCOM oracle.
Consider a deterministic machine W ′ that simulates W without accessing the oracle; that is,
if at some point W makes the EXPCOM query (M, y, 1t), W ′ instead computes the oracle
answer by simulating M on y for 2t steps. Note that, on input x of length n, any strings
y or 1t that W computes when forming oracle queries must be of length polynomial in n.
Thus, there is a polynomial p2 such that the time that W ′ requires to simulate an oracle
query by W is bounded above by 2p2(n). The entire tree of possible computations by W on
input x has size 2p1(n). W ′ can explore the entire tree (and accept if and only if it finds
at least one accepting path) in time 2p1(n) · 2p2(n), because the tree is of size 2p1(n), and the
most time-consuming thing W ′ will ever have to do at any node of the tree is to compute
the answer to an oracle query. Since the total running time of this deterministic simulation
is singly exponential (specifically, bounded above by 2(p1+p2)(n)), the language L(WEXPCOM)
is in EXP. Since W is an arbitrary NP machine, this means that NPEXPCOM ⊆ EXP .

We now turn to the proof that there is a set B such that PB 6= NPB.
For any set B, let UB = {1n such that ∃x of length n in B}.
Then, for any B, UB ∈ NPB. (WHY?)
We will construct a B such that UB 6∈ PB. Let Mi be the oracle TM given by the

binary representation of i. Define the set B in an infinite number of “stages,” one for each
non-negative integer i, so that it has the property that, for all i, MB

i does not recognize UB

in time 2n

10
. Note that this is stronger than UB 6∈ PB.

Stage 0: B ← ∅.
Assume that we’ve done stages 0 through i − 1 of the construction. At this point,

membership or nonmembership in B has been fixed for some finite number of strings; say
that the longest one of them has length n− 1. This value of n will be used in stage i of the
construction.

1

Stage i: Run machine Mi on input 1n for 2n

10
steps. When Mi needs the answer to an

oracle query q, it does the following:

* If it has been determined in an earlier stage whether q is in B, then answer consistently
with the earlier decision.

** If it has not been determined in an earlier stage whether q is in B, then answer NO
(whether or not |q| < n) and fix q as a non-member of B.

Finish off Stage i of the definition of B (by doing (1) and (2) below) in such a way that, if
Mi halts within 2n

10
steps, it makes the wrong decision. Note that * and ** above ensure that,

if Mi halts within 2n

10
steps on 1n, it can actually make an ACC/REJ decision. (WHY?)

1. If it accepts, then define B ∩ {0, 1}n to be ∅. Note that this is consistent with * and
**. (WHY?)

2. If it rejects, then choose a string q of length n whose membership in B has not been
determined in an earlier stage and put it in B. Note that such a q must exist. (WHY?)

In case 1, Mi accepts 1n, but there is no string of length n in B. In case 2, Mi rejects 1n,
but q is a string in B that has length n. Thus UB is not correctly decided by MB

i in time
2n

10
. This holds for all i, and thus UB is not recognized by any deterministic oracle machine

with access to oracle B in time 2n

10
. A fortiori, UB 6∈ PB.

There is one loose end in this argument that can be tied up easily: If t is a string that is
never used in any stage of the construction, its membership in B can be set arbitrarily.

One interpretation of this result is that A is a very powerful oracle: If the class of
deterministic, polynomial-time machines is given access to A, then it can gain no additional
power by obtaining access to nondeterminism. Under the same interpretation, B is a weaker
oracle: With access to B, deterministic, polynomial-time machines still cannot do everything
that nondeterministic, polynomial-time machines can do.

2

