The Cook-Levin Theorem

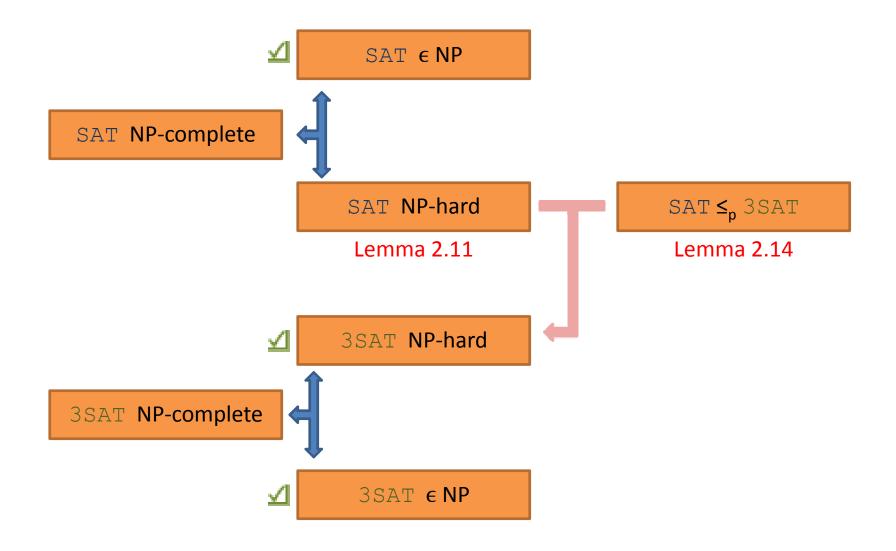
CS468/568

Author: David Costanzo, Yale University Adapted from <u>Computational Complexity: A Modern Approach</u> by Arora and Barak

The Claim

- Claim 1: SAT is NP-complete
- Claim 2: 3SAT is NP-complete

Proof Structure



Lemma 2.14: SAT ≤_p 3SAT

 Convert each CNF clause of size k to equivalent clauses of sizes k−1 and 3
→ repeat until all clauses are size 3

> $C = u_1 \vee u_2 \vee \cdots \vee u_k$ $C_1 = u_1 \vee u_2 \vee y \iff \text{(fresh variable)}$ $C_2 = u_3 \vee \cdots \vee u_k \vee \overline{y}$

 $C \in SAT \Leftrightarrow C_1 \wedge C_2 \in SAT$

- Pick any L ∈ NP, and let M be a poly-time TM recognizing L on any input x and valid certificate u
- Assumptions:
 - *M* has 1 input tape and 1 work/output tape
 - -M is oblivious

 $x \in L \Leftrightarrow \exists u \in \{0,1\}^{p(|x|)}$. $M(x \cdot u) = 1$

 Need to describe a poly-time function mapping input x of length n to formula φ_x such that:

 $x \in L \Leftrightarrow \varphi_x \in SAT$

 Need to describe a poly-time function mapping input x of length n to formula φ_x such that:

 $x \in L \Leftrightarrow \varphi_x \in SAT$

Or equivalently:

 $\exists u \in \{0,1\}^{p(|x|)}$. $M(x \cdot u) = 1 \Leftrightarrow \varphi_x \in SAT$

- Variables of φ_x :
 - $-y_1, y_2, ..., y_n$ (first n bits of input $x \cdot u$)
 - $-\mathbf{y}_{n+1}, \mathbf{y}_{n+2}, \dots, \mathbf{y}_{n+p(n)}$ (next p(n) bits of input $x \cdot u$)
 - $-z_1, z_2, ..., z_{T(n)}$ (snapshots of TM M on input $x \cdot u$)

(bit strings of length c)

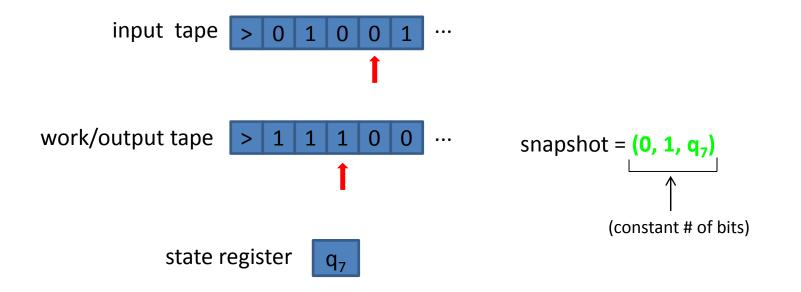
• Variables of φ_x :

 $-y_1, y_2, ..., y_n$ (first n bits of input $x \cdot u$)

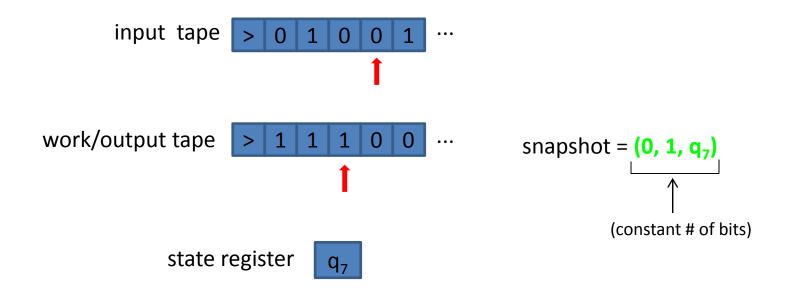
- $-\mathbf{y}_{n+1}, \mathbf{y}_{n+2}, \dots, \mathbf{y}_{n+p(n)}$ (next p(n) bits of input $x \cdot u$)
- $-z_1, z_2, ..., z_{T(n)}$ (snapshots of TM *M* on input $x \cdot u$)
- The goal:

The formula φ_x is satisfied iff the input snapshots represent a valid execution of M on input $y = x \cdot u$

• What is a snapshot?



• What is a snapshot?



• How to determine the correct snapshot at time i?

- Given input y and all snapshots z₁, ..., z_{i-1}, there exists at most one valid snapshot z_i
- This z_i depends *only* on z_{i-1}, z_{prev(i)}, and y_{inputpos(i)}
 - prev(i) = the most recent step preceding i at which the work/output head was at the same position as at step i
 - inputpos(i) = the position of the input head at step i
 - These are well-defined by obliviousness, and poly-time computable by simulating M on dummy input $O^{|x|}$

$$z_{i} = F(z_{i-1}, z_{prev(i)}, y_{inputpos(i)})$$

F: {0,1}^{2c+1} \rightarrow {0,1}^c

 $\varphi_x = A \wedge B \wedge C \wedge D$

- **A** : the first n bits of y are equal to the bits of x $(x_1 \lor \overline{y_1}) \land (\overline{x_1} \lor y_1) \land \dots \land (x_n \lor \overline{y_n}) \land (\overline{x_n} \lor y_n)$
- $B: \mathbf{z}_1$ correctly encodes the initial snapshot of M
- C : z_{T(n)} correctly encodes a halting snapshot of M from which M outputs 1 (i.e. accept)
- D: For each i between 2 and T(n)-1,

 $z_i = F(z_{i-1}, z_{prev(i)}, y_{inputpos(i)})$

How to express $z_i = F(z_{i-1}, z_{prev(i)}, y_{inputpos(i)})$ in CNF?

$$f: \{0,1\}^{l} \rightarrow \{0,1\}$$
$$\psi_{x} = \bigwedge_{\nu:f(\nu)=0} C_{\nu}(x_{1}, \dots, x_{l})$$
$$C_{1101} = \overline{x_{1}} \vee \overline{x_{2}} \vee x_{3} \vee \overline{x_{4}}$$
$$C_{00110} = x_{1} \vee x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee x_{5}$$

etc...

 $\psi_x \in SAT \Leftrightarrow f(x) = 1$

