PSPACE-completeness of TQBF

CS468/568

Quantified Boolean Formula

$$
\begin{aligned}
& Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \varphi\left(x_{1}, x_{2}, \ldots x_{n}\right) \\
& \quad Q_{i} \in\{\forall, \exists\}
\end{aligned}
$$

e.g.

$$
\forall x_{1} \exists x_{2} \forall x_{3}\left(\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{3}\right)\right)
$$

Note: Since there are no unbound variables, a QBF is always either true or false TQBF = the set of all true QBFs

TQBF \in PSPACE

$$
\psi=Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \varphi\left(x_{1}, x_{2}, \ldots x_{n}\right)
$$

- If $Q_{1}=\forall$, recursively check that ψ is true for both $x_{1}=0$ and $x_{1}=1$
- If $Q_{1}=\exists$, recursively check that ψ is true for either $x_{1}=0$ or $x_{1}=1$
- Reuse space for recursive calls!

TQBF is PSPACE-hard

- Pick any L \in PSPACE, and let M be a TM recognizing L in space $S(n)$

TQBF is PSPACE-hard

- Pick any $L \in$ PSPACE, and let M be a TM recognizing L in space $S(n)$
- Goal: Define $\psi_{M, x}:\{0,1\}^{2 m} \rightarrow Q B F$ s.t. $\psi_{M, x}\left(C, C^{\prime}\right) \in T Q B F$ iff there's a path from C to C^{\prime} in the config. graph of M on input x
- We need to construct a poly-space representation of $\psi_{M, x}\left(C_{\text {start }}, C_{\text {accept }}\right)$ in polynomial time

TQBF is PSPACE-hard

- Define ψ_{i} such that $\psi_{i}\left(C, C^{\prime}\right)$ is true iff there is a path in the configuration graph from C to C^{\prime} of length at most 2^{i}

TQBF is PSPACE-hard

- Define ψ_{i} such that $\psi_{i}\left(C, C^{\prime}\right)$ is true iff there is a path in the configuration graph from C to C^{\prime} of length at most 2^{i}
- $\psi_{0}\left(C, C^{\prime}\right)$ is constructible in poly-space using the techniques of Cook's Theorem

TQBF is PSPACE-hard

- Define ψ_{i} such that $\psi_{i}\left(C, C^{\prime}\right)$ is true iff there is a path in the configuration graph from C to C^{\prime} of length at most 2^{i}
- $\psi_{0}\left(C, C^{\prime}\right)$ is constructible in poly-space using the techniques of Cook's Theorem
- $\psi_{m}\left(C, C^{\prime}\right)=\psi_{M, x}\left(C, C^{\prime}\right)$

TQBF is PSPACE-hard

- Inductive definition of ψ_{i} based on existence of a midpoint of a path (like in Savitch's Theorem):

$$
\psi_{i}\left(C, C^{\prime}\right) \Leftrightarrow \exists C^{\prime \prime} \cdot \psi_{i-1}\left(C, C^{\prime \prime}\right) \wedge \psi_{i-1}\left(C^{\prime \prime}, C^{\prime}\right)
$$

TQBF is PSPACE-hard

- Inductive definition of ψ_{i} based on existence of a midpoint of a path (like in Savitch's Theorem):

$$
\psi_{i}\left(C, C^{\prime}\right) \Leftrightarrow \exists C^{\prime \prime} \cdot \psi_{i-1}\left(C, C^{\prime \prime}\right) \wedge \psi_{i-1}\left(C^{\prime \prime}, C^{\prime}\right)
$$

- Problem: ψ_{i} is twice the length of ψ_{i-1} !
$\Rightarrow \psi_{m}$ is of length exponential in m

TQBF is PSPACE-hard

- Inductive definition of ψ_{i} based on existence of a midpoint of a path (like in Savitch's Theorem):

$$
\psi_{i}\left(C, C^{\prime}\right) \Leftrightarrow \exists C^{\prime \prime} \cdot \psi_{i-1}\left(C, C^{\prime \prime}\right) \wedge \psi_{i-1}\left(C^{\prime \prime}, C^{\prime}\right)
$$

- Problem: ψ_{i} is twice the length of ψ_{i-1} !
$\Rightarrow \psi_{m}$ is of length exponential in m
- Solution: add universally-quantified variables so that ψ_{i-1} only needs to be mentioned once

TQBF is PSPACE-hard

$$
\psi_{i}\left(C, C^{\prime}\right) \Leftrightarrow \exists C^{\prime \prime} \cdot \psi_{i-1}\left(C, C^{\prime \prime}\right) \wedge \psi_{i-1}\left(C^{\prime \prime}, C^{\prime}\right)
$$

is equivalent to

$$
\begin{aligned}
& \psi_{i}\left(C, C^{\prime}\right) \Leftrightarrow \exists C^{\prime \prime} \forall D_{1} \forall D_{2} . \\
& \quad\left(\left(D_{1}=C \wedge D_{2}=C^{\prime \prime}\right) \vee\left(D_{1}=C^{\prime \prime} \wedge D_{2}=C^{\prime}\right)\right) \\
& \quad \Rightarrow \psi_{i-1}\left(D_{1}, D_{2}\right)
\end{aligned}
$$

TQBF is PSPACE-hard

$$
\psi_{i}\left(C, C^{\prime}\right) \Leftrightarrow \exists C^{\prime \prime} \cdot \psi_{i-1}\left(C, C^{\prime \prime}\right) \wedge \psi_{i-1}\left(C^{\prime \prime}, C^{\prime}\right)
$$

is equivalent to

$$
\begin{aligned}
& \psi_{i}\left(C, C^{\prime}\right) \Leftrightarrow \exists C^{\prime \prime} \forall D_{1} \forall D_{2} \\
& \quad\left(\left(D_{1}=C \wedge D_{2}=C^{\prime \prime}\right) \vee\left(D_{1}=C^{\prime \prime} \wedge D_{2}=C^{\prime}\right)\right) \\
& \quad \Rightarrow \psi_{i-1}\left(D_{1}, D_{2}\right)
\end{aligned}
$$

QED

