PSPACE-completeness of TQBF

CS468/568

Quantified Boolean Formula

$$Q_1 x_1 Q_2 x_2 \dots Q_n x_n \varphi(x_1, x_2, \dots x_n)$$

 $Q_i \in \{ \forall, \exists \}$

e.g.

$$\forall x_1 \exists x_2 \forall x_3 ((x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_3))$$

Note: Since there are no unbound variables, a QBF is always either *true* or *false*

TQBF = the set of all true QBFs

TQBF ϵ PSPACE

$$\psi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \varphi(x_1, x_2, \dots x_n)$$

- If $Q_1 = \forall$, recursively check that ψ is true for both $x_1 = 0$ and $x_1 = 1$
- If $Q_1 = \exists$, recursively check that ψ is true for either $x_1 = 0$ or $x_1 = 1$
- Reuse space for recursive calls!

Pick any L ∈ PSPACE, and let M be a TM recognizing L in space S(n)

- Pick any L ∈ PSPACE, and let M be a TM recognizing L in space S(n)
- Goal: Define $\psi_{M,x}:\{0,1\}^{2m}\to QBF$ s.t. $\psi_{M,x}(C,C')\in TQBF$ iff there's a path from C to C' in the config. graph of M on input x
- We need to construct a poly-space representation of $\psi_{M,x}(C_{start},C_{accept})$ in polynomial time

• Define ψ_i such that $\psi_i(C,C')$ is true iff there is a path in the configuration graph from C to C' of length at most 2^i

- Define ψ_i such that $\psi_i(C,C')$ is true iff there is a path in the configuration graph from C to C' of length at most 2^i
- $\psi_0(C,C')$ is constructible in poly-space using the techniques of Cook's Theorem

- Define ψ_i such that $\psi_i(C,C')$ is true iff there is a path in the configuration graph from C to C' of length at most 2^i
- $\psi_0(C,C')$ is constructible in poly-space using the techniques of Cook's Theorem
- $\psi_m(C,C') = \psi_{M,x}(C,C')$

• Inductive definition of ψ_i based on existence of a midpoint of a path (like in Savitch's Theorem):

$$\psi_i(C,C') \iff \exists C''.\psi_{i-1}(C,C'') \land \psi_{i-1}(C'',C')$$

• Inductive definition of ψ_i based on existence of a midpoint of a path (like in Savitch's Theorem):

$$\psi_i(C,C') \Leftrightarrow \exists C''.\psi_{i-1}(C,C'') \land \psi_{i-1}(C'',C')$$

- **Problem**: ψ_i is twice the length of ψ_{i-1} !
 - $\Rightarrow \psi_m$ is of length exponential in m

• Inductive definition of ψ_i based on existence of a midpoint of a path (like in Savitch's Theorem):

$$\psi_i(C,C') \Leftrightarrow \exists C''.\psi_{i-1}(C,C'') \land \psi_{i-1}(C'',C')$$

- **Problem**: ψ_i is twice the length of ψ_{i-1} ! $\Rightarrow \psi_m$ is of length exponential in m
- Solution: add universally-quantified variables so that ψ_{i-1} only needs to be mentioned once

$$\psi_i(C,C') \iff \exists C''.\psi_{i-1}(C,C'') \land \psi_{i-1}(C'',C')$$

is equivalent to

$$\psi_{i}(C,C') \iff \exists C'' \forall D_{1} \forall D_{2}.$$

$$\left((D_{1} = C \land D_{2} = C'') \lor (D_{1} = C'' \land D_{2} = C') \right)$$

$$\implies \psi_{i-1}(D_{1},D_{2})$$

$$\psi_i(C,C') \iff \exists C''.\psi_{i-1}(C,C'') \land \psi_{i-1}(C'',C')$$

is equivalent to

$$\psi_{i}(C,C') \iff \exists C'' \forall D_{1} \forall D_{2}.$$

$$\left((D_{1} = C \land D_{2} = C'') \lor (D_{1} = C'' \land D_{2} = C') \right)$$

$$\implies \psi_{i-1}(D_{1},D_{2})$$

QED