The USAT Version of the Valiant-Vazirani Lemma

This is the proof that was presented in class on November 9, 2010.

Consider the following “promise problem,” which we denote by USAT (“U” for uniquely).
The input is a CNF formula ¢; the output N is a non-negative integer. Recall that #(¢) is
the number of satisfying assignments of ¢.

#(p)=0= N=0
#@P)=1= N=1
#(¢) > 1 = N can be any non-negative integer.

So the “promise” in USAT is that ¢ either is unsatisfiable or has a unique satisfying
assignment. If the promise is kept, then the output is correct; if the promise is broken, then
the output could be anything.

On the face of it, USAT seems as though it may be easier than the general SAT problem.
However, Valiant and Vazirani have shown the following:

Theorem 1: If USAT can be solved in polynomial time, then NP = RP.
Their main technical result is

Theorem 2: There is a probabilistic polynomial-time algorithm A such that

1
= S—n, and
¢ & SAT = Prob[A(¢) has zero satisfying assignments| = 1.

¢ € SAT = Prob[A(¢) has a unique satisfying assignment| >

Here, the probability is computed over the coin tosses of A.

We will prove Theorem 2 below. First observe that Theorem 2 implies Theorem 1.
Suppose that B were a deterministic algorithm that solved USAT in polynomial time. Then
B o A would be an algorithm that, if given a satisfiable formula as input, would output 1
with probability at least gin and, if given an unsatisfiable formula as input, would output
0 with probability 1. Note that the correctness probability of the first case could be made
exponentially close to 1 using polynomially many independent trials of B o A and outputting
1 if and only if at least one trial outputs 1. The existence of such an algorithm would imply
that SAT was in RP and thus that NP = RP.

Proof of Theorem 2: Let H,; be a pairwise-independent hash-function family, where
2<k<n+1. Letp=2"and S C {0,1}" be such that 2¥2 < |S| < 2k-1,
Recall that

Probye 1, [R(z) = 0"] = p, for all z, and (1)
Probue un,,  [1(x) = 0 A h(z') = 0] = p?, for all & # 2. (2)
Claim 3: Probje,, .[|z € S such that h(z) = 0% = 1] > 1.
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We will prove Claim 3 below. First, we argue that it can be used to prove Theorem
2. For a given k € [2,n + 1] and h € H, 4, let M be a polynomial-time machine that
accepts z if and only if h(x) = 0F. Note that M can also be regarded as a nondeterministic,
polynomial-time machine with the property that, on any input z, M has either one or zero
accepting computations. Apply the parsimonious version of the Cook-Levin reduction to M.
This produces, for every x such that h(z) = 0%, a CNF formula 7(z,y) that has a unique
satisfying assighment and, for every z such that h(x) # 0%, a CNF formula 7(z, %) that has
no satisfying assignments.

The probabilistic, polynomial-time algorithm A of Theorem 2 proceeds as follows. First
choose k uniformly at random from [2,n + 1]. Next, choose h uniformly at random from
Hp. For the M that corresponds to h and k, compute the corresponding 7(z,y). Then
A(p) = ¢(z) A1(x,y). Clearly, if ¢ € SAT, then A(¢p) € SAT as well. If ¢ € SAT, then, with
probability at least %, A chooses a k for which the set S of satisfying assignments of ¢ is such
that 282 < |S| < 281, Independently, with probability at least %, Claim 3 guarantees that
there is a unique = € S such that h(x) = 0% and hence a unique z,y such that 7(x,y) = 1.
Thus, with probability at least g-, A(¢) has a unique satisfying assignment.

Proof of Claim 3: Let N = |[{z € S such that h(z) = 0*}|. Then N is a random variable
the distribution of which is determined by the uniformly random choice of h € H,, . We
are interested in the probability that N = 1, which is the difference between the probability
that N > 1 and the probability that N > 2.

Probye g, [N > 1] = Probue, , [32 s.t. h(z) = 0%] = Probye ., [\/ h(z) = 04].

€S

Apply equations (1) and (2) above, together with the inclusion-exclusion principle, to
obtain

Probue g, [\/ h(x) = 0%]

TE€S

> Probeg,, [h(z) =0 — Y Probueum,, [h(z) = h(z)) = 0"]
z€eS {z,2'}€S, vz’

_ AEAW
= |Slp <2 p°.

Now apply the union bound to obtain

v

Probpegr, [N > 2] = Probue,, [ \/  h(z) = h(z') = 0']
{z,2'}€S, vz’

< Y Probueg,[h(@) = h(z) = 0]
{z,x'}€S, x#z’
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Putting together the lower bound on the probability that N > 1 and the upper bound
on the probability that N > 2, we have

PrObheRHn,k: [N = 1] = PrObheRHn,k [N 2 1] - PrObheRHn,k [N Z 2]

S
> \5\19—2(‘2')1)2

> |Slp — |S[*p*
= [Slp- (1 = [Slp)-
Because p = 2% and 272 < |S] < 2"! we have |S| > 1 and (1 — |S|p) > 5 (the latter

because |S|p < ). This implies that |S|p - (1 — |S|p), our lower bound on the probability
that N =1, is at least % and completes the proof of Lemma 3.



