Two Theorems about BPP

Adleman's Theorem: BPP \subseteq P/poly

Proof: Let L be a set in BPP. Recall that the Chernoff bounds on the tails of the binomial distribution ensure that there is a probabilistic polynomial-time machine M such that $M(x)=L(x)$ with probability at least $1-2^{-(n+1)}$. Let m be the maximum number of random bits that M uses on inputs of length n. So $m=\operatorname{poly}(n)$, and M 's output on input x is a function of x and a random string $r \in\{0,1\}^{m}$; this function of x and r is computable in deterministic polynomial time.

Fix a length n, and consider all inputs $x \in\{0,1\}^{n}$. We say that r is bad for x if M outputs the wrong answer on input x and random string r; otherwise, r is good for x. Because M 's error probability is at most $2^{-(n+1)}$, the number of r 's that are bad for any given x is at most $\left(2^{m}\right) /\left(2^{n+1}\right)$. The total number of r 's that are bad for at least one x is thus at most $\left(2^{n}\right) \cdot\left(\left(2^{m}\right) /\left(2^{(n+1)}\right)\right)=2^{m-1}$. (This maximum would be achieved if the set of r 's that are bad for x_{1} were disjoint from the set of r 's that are bad for x_{2}, for all $x_{1} \neq x_{2}$.) This means that there are $2^{m}-2^{m-1}>0$ strings r that are good for all $x \in\{0,1\}^{n}$.

Let r_{n} be a random string that is good for all $x \in\{0,1\}^{n}$. The circuit C_{n} that accepts elements of $L \cap\{0,1\}^{n}$ is " M on inputs of length n, with r_{n} hardcoded in," i.e., one that computes precisely the function that M computes on inputs of length n when it uses the random string r_{n}. The proof of Theorem $6.6(\mathrm{P} \subseteq \mathrm{P} /$ poly $)$ shows that $\left\{C_{n}\right\}_{n \geq 1}$ is a polynomial-sized circuit family.

The Sipser-Gacs Theorem: BPP $\subseteq \Sigma_{2}^{P} \cap \Pi_{2}^{P}$

Proof: Because BPP is closed under complement, it suffices to show that BPP $\subseteq \Sigma_{2}^{P}$. Let L be a language in BPP and M be a machine that accepts L and has error probability at most 2^{-n}. Let $m=\operatorname{poly}(n)$ be the length of the random strings that M uses on inputs $x \in\{0,1\}^{n}$. We denote by $M(x, r)$ the output of M on input x when M uses random string r.

For $x \in\{0,1\}^{n}$, let S_{x} be the set of strings $r \in\{0,1\}^{m}$ such that $M(x, r)=1$. If r is chosen uniformly at random from $\{0,1\}^{m}$, then r is in S_{x} with probability at most 2^{-n} if $x \notin L$, and r is in S_{x} with probability at least $1-2^{-n}$ if $x \in L$.

Let $k=m / n+1$, and consider a set $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ of strings in $\{0,1\}^{m}$. Each such set U defines a graph G_{U} on vertex set $\{0,1\}^{m}$. The edge $\{r, s\}$ is present in $E\left(G_{U}\right)$ if and only if there is a $u_{i} \in U$ such that $r=s \oplus u_{i}$, where \oplus denotes bitwise-xor. Let $\Gamma_{U}(S)$ be the neighborhood of $S \subseteq V\left(G_{U}\right)$, i.e., all $r \in V\left(G_{U}\right)=\{0,1\}^{m}$ such that $r=s \oplus u_{i}$, for some $u_{i} \in U$ and $s \in S$.

Note first that, if $x \notin L$, then there is no U such that $\Gamma_{U}\left(S_{x}\right)$ is all of $V\left(G_{U}\right)=\{0,1\}^{m}$. Because the degree of each node in G_{U} is k, the total number of neighbors of S_{x} is $k \cdot\left|S_{x}\right|$. Because $x \notin L, k \cdot\left|S_{x}\right| \leq k \cdot 2^{m-n}=\left(k / 2^{n}\right) \cdot 2^{m}$. Recall that $k=m / n+1=\operatorname{poly}(n)$. Thus, $\left(k / 2^{n}\right)<1$, for all sufficiently large n, and $\left|\Gamma_{U}\left(S_{x}\right)\right|=\left(k / 2^{n}\right) \cdot 2^{m}<2^{m}=\left|V\left(G_{U}\right)\right|$.

We will use the probabilistic method to show that, if $x \in L$, there is a U such that $\Gamma_{U}\left(S_{x}\right)$ is all of $V\left(G_{U}\right)=\{0,1\}^{m}$. Consider $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ chosen uniformly at random from
all k-element subsets of $\{0,1\}^{m}$. We wish to prove that, for such a randomly chosen U, the probability that $\Gamma_{U}\left(S_{x}\right) \neq\{0,1\}^{m}$ is less than 1 . First, we compute the probability that an arbitrary $r \in\{0,1\}^{m}$ is not in $\Gamma_{U}\left(S_{x}\right)$. Because U was chosen uniformly at random from all k-element subsets of $\{0,1\}^{m}$, each u_{i} is a uniformly random m-bit string. This implies that, for fixed i, the set $S_{i}=\left\{s \oplus u_{i}\right.$ s.t. $\left.s \in S_{x}\right\}$ is distributed uniformly over all subsets of $\{0,1\}^{m}$ that have size $\left|S_{x}\right| \geq 2^{m}-2^{m-n}$. The probability that $r \notin S_{i}$ is thus $\left(2^{m}-\left|S_{x}\right|\right) / 2^{m} \leq\left(2^{m}-2^{m}+2^{m-n}\right) / 2^{m}=2^{-n}$. The probability that r is not in $\Gamma_{U}\left(S_{x}\right)$ is the probability that it is not in S_{i} for any $i, 1 \leq i \leq k$; this probability is at most $2^{-n k}$, because the u_{i} are independent. By the union bound (see Appendix A. 2 in your textbook), the probability that there is at least one r that is not in $\Gamma_{U}\left(S_{x}\right)$ is at most $2^{m-n k}=2^{-n}<1$.

The conclusions of the last two paragraphs give us the following Σ_{2}^{P} expression for membership in L :
$x \in L$ if and only if $\exists\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \subset\{0,1\}^{m} \forall r \in\{0,1\}^{m} \vee_{i=1}^{k} M\left(x, r \oplus u_{i}\right)=1$.

