Two Theorems about BPP

Adleman's Theorem: $BPP \subseteq P/poly$

Proof: Let *L* be a set in BPP. Recall that the Chernoff bounds on the tails of the binomial distribution ensure that there is a probabilistic polynomial-time machine *M* such that M(x) = L(x) with probability at least $1 - 2^{-(n+1)}$. Let *m* be the maximum number of random bits that *M* uses on inputs of length *n*. So m = poly(n), and *M*'s output on input *x* is a function of *x* and a random string $r \in \{0, 1\}^m$; this function of *x* and *r* is computable in deterministic polynomial time.

Fix a length n, and consider all inputs $x \in \{0, 1\}^n$. We say that r is bad for x if M outputs the wrong answer on input x and random string r; otherwise, r is good for x. Because M's error probability is at most $2^{-(n+1)}$, the number of r's that are bad for any given x is at most $(2^m)/(2^{n+1})$. The total number of r's that are bad for at least one x is thus at most $(2^n) \cdot ((2^m)/(2^{(n+1)})) = 2^{m-1}$. (This maximum would be achieved if the set of r's that are bad for x_1 were disjoint from the set of r's that are bad for x_2 , for all $x_1 \neq x_2$.) This means that there are $2^m - 2^{m-1} > 0$ strings r that are good for all $x \in \{0, 1\}^n$.

Let r_n be a random string that is good for all $x \in \{0, 1\}^n$. The circuit C_n that accepts elements of $L \cap \{0, 1\}^n$ is "*M* on inputs of length *n*, with r_n hardcoded in," i.e., one that computes precisely the function that *M* computes on inputs of length *n* when it uses the random string r_n . The proof of Theorem 6.6 (P \subseteq P/poly) shows that $\{C_n\}_{n\geq 1}$ is a polynomial-sized circuit family.

The Sipser-Gacs Theorem: BPP $\subseteq \Sigma_2^P \cap \Pi_2^P$

Proof: Because BPP is closed under complement, it suffices to show that $BPP \subseteq \Sigma_2^P$. Let L be a language in BPP and M be a machine that accepts L and has error probability at most 2^{-n} . Let m = poly(n) be the length of the random strings that M uses on inputs $x \in \{0,1\}^n$. We denote by M(x,r) the output of M on input x when M uses random string r.

For $x \in \{0,1\}^n$, let S_x be the set of strings $r \in \{0,1\}^m$ such that M(x,r) = 1. If r is chosen uniformly at random from $\{0,1\}^m$, then r is in S_x with probability at most 2^{-n} if $x \notin L$, and r is in S_x with probability at least $1 - 2^{-n}$ if $x \in L$.

Let k = m/n + 1, and consider a set $U = \{u_1, u_2, \ldots, u_k\}$ of strings in $\{0, 1\}^m$. Each such set U defines a graph G_U on vertex set $\{0, 1\}^m$. The edge $\{r, s\}$ is present in $E(G_U)$ if and only if there is a $u_i \in U$ such that $r = s \oplus u_i$, where \oplus denotes bitwise-xor. Let $\Gamma_U(S)$ be the *neighborhood* of $S \subseteq V(G_U)$, i.e., all $r \in V(G_U) = \{0, 1\}^m$ such that $r = s \oplus u_i$, for some $u_i \in U$ and $s \in S$.

Note first that, if $x \notin L$, then there is no U such that $\Gamma_U(S_x)$ is all of $V(G_U) = \{0, 1\}^m$. Because the degree of each node in G_U is k, the total number of neighbors of S_x is $k \cdot |S_x|$. Because $x \notin L$, $k \cdot |S_x| \leq k \cdot 2^{m-n} = (k/2^n) \cdot 2^m$. Recall that k = m/n + 1 = poly(n). Thus, $(k/2^n) < 1$, for all sufficiently large n, and $|\Gamma_U(S_x)| = (k/2^n) \cdot 2^m < 2^m = |V(G_U)|$.

We will use the probabilistic method to show that, if $x \in L$, there is a U such that $\Gamma_U(S_x)$ is all of $V(G_U) = \{0, 1\}^m$. Consider $U = \{u_1, u_2, \ldots, u_k\}$ chosen uniformly at random from

all k-element subsets of $\{0,1\}^m$. We wish to prove that, for such a randomly chosen U, the probability that $\Gamma_U(S_x) \neq \{0,1\}^m$ is less than 1. First, we compute the probability that an arbitrary $r \in \{0,1\}^m$ is not in $\Gamma_U(S_x)$. Because U was chosen uniformly at random from all k-element subsets of $\{0,1\}^m$, each u_i is a uniformly random m-bit string. This implies that, for fixed i, the set $S_i = \{s \oplus u_i \text{ s.t. } s \in S_x\}$ is distributed uniformly over all subsets of $\{0,1\}^m$ that have size $|S_x| \geq 2^m - 2^{m-n}$. The probability that $r \notin S_i$ is thus $(2^m - |S_x|)/2^m \leq (2^m - 2^m + 2^{m-n})/2^m = 2^{-n}$. The probability that r is not in $\Gamma_U(S_x)$ is the probability that it is not in S_i for any $i, 1 \leq i \leq k$; this probability is at most 2^{-nk} , because the u_i are independent. By the union bound (see Appendix A.2 in your textbook), the probability that there is at least one r that is not in $\Gamma_U(S_x)$ is at most $2^{m-nk} = 2^{-n} < 1$.

The conclusions of the last two paragraphs give us the following Σ_2^P expression for membership in L:

$$x \in L$$
 if and only if $\exists \{u_1, u_2, \dots, u_k\} \subset \{0, 1\}^m \ \forall r \in \{0, 1\}^m \ \lor_{i=1}^k M(x, r \oplus u_i) = 1.$