
Two Theorems about BPP

Adleman’s Theorem: BPP ⊆ P/poly

Proof: Let L be a set in BPP. Recall that the Chernoff bounds on the tails of the bino-
mial distribution ensure that there is a probabilistic polynomial-time machine M such that
M(x) = L(x) with probability at least 1 − 2−(n+1). Let m be the maximum number of
random bits that M uses on inputs of length n. So m = poly(n), and M ’s output on input
x is a function of x and a random string r ∈ {0, 1}m; this function of x and r is computable
in deterministic polynomial time.

Fix a length n, and consider all inputs x ∈ {0, 1}n. We say that r is bad for x if M outputs
the wrong answer on input x and random string r; otherwise, r is good for x. Because M ’s
error probability is at most 2−(n+1), the number of r’s that are bad for any given x is at
most (2m)/(2n+1). The total number of r’s that are bad for at least one x is thus at most
(2n) · ((2m)/(2(n+1))) = 2m−1. (This maximum would be achieved if the set of r’s that are
bad for x1 were disjoint from the set of r’s that are bad for x2, for all x1 6= x2.) This means
that there are 2m − 2m−1 > 0 strings r that are good for all x ∈ {0, 1}n.

Let rn be a random string that is good for all x ∈ {0, 1}n. The circuit Cn that accepts
elements of L∩{0, 1}n is “M on inputs of length n, with rn hardcoded in,” i.e., one that com-
putes precisely the function that M computes on inputs of length n when it uses the random
string rn. The proof of Theorem 6.6 (P ⊆ P/poly) shows that {Cn}n≥1 is a polynomial-sized
circuit family. �

The Sipser-Gacs Theorem: BPP ⊆ ΣP
2 ∩ ΠP
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Proof: Because BPP is closed under complement, it suffices to show that BPP ⊆ ΣP
2 . Let

L be a language in BPP and M be a machine that accepts L and has error probability at
most 2−n. Let m = poly(n) be the length of the random strings that M uses on inputs
x ∈ {0, 1}n. We denote by M(x, r) the output of M on input x when M uses random string
r.

For x ∈ {0, 1}n, let Sx be the set of strings r ∈ {0, 1}m such that M(x, r) = 1. If r is
chosen uniformly at random from {0, 1}m, then r is in Sx with probability at most 2−n if
x 6∈ L, and r is in Sx with probability at least 1− 2−n if x ∈ L.

Let k = m/n+1, and consider a set U = {u1, u2, . . . , uk} of strings in {0, 1}m. Each such
set U defines a graph GU on vertex set {0, 1}m. The edge {r, s} is present in E(GU) if and
only if there is a ui ∈ U such that r = s ⊕ ui, where ⊕ denotes bitwise-xor. Let ΓU(S) be
the neighborhood of S ⊆ V (GU), i.e., all r ∈ V (GU) = {0, 1}m such that r = s⊕ ui, for some
ui ∈ U and s ∈ S.

Note first that, if x 6∈ L, then there is no U such that ΓU(Sx) is all of V (GU) = {0, 1}m.
Because the degree of each node in GU is k, the total number of neighbors of Sx is k · |Sx|.
Because x 6∈ L, k · |Sx| ≤ k · 2m−n = (k/2n) · 2m. Recall that k = m/n + 1 = poly(n). Thus,
(k/2n) < 1, for all sufficiently large n, and |ΓU(Sx)| = (k/2n) · 2m < 2m = |V (GU)|.

We will use the probabilistic method to show that, if x ∈ L, there is a U such that ΓU(Sx)
is all of V (GU) = {0, 1}m. Consider U = {u1, u2, . . . , uk} chosen uniformly at random from
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all k-element subsets of {0, 1}m. We wish to prove that, for such a randomly chosen U ,
the probability that ΓU(Sx) 6= {0, 1}m is less than 1. First, we compute the probability
that an arbitrary r ∈ {0, 1}m is not in ΓU(Sx). Because U was chosen uniformly at random
from all k-element subsets of {0, 1}m, each ui is a uniformly random m-bit string. This
implies that, for fixed i, the set Si = {s ⊕ ui s.t. s ∈ Sx} is distributed uniformly over all
subsets of {0, 1}m that have size |Sx| ≥ 2m − 2m−n. The probability that r 6∈ Si is thus
(2m − |Sx|)/2m ≤ (2m − 2m + 2m−n)/2m = 2−n. The probability that r is not in ΓU(Sx) is
the probability that it is not in Si for any i, 1 ≤ i ≤ k; this probability is at most 2−nk,
because the ui are independent. By the union bound (see Appendix A.2 in your textbook),
the probability that there is at least one r that is not in ΓU(Sx) is at most 2m−nk = 2−n < 1.

The conclusions of the last two paragraphs give us the following ΣP
2 expression for mem-

bership in L:

x ∈ L if and only if ∃{u1, u2, . . . , uk} ⊂ {0, 1}m ∀r ∈ {0, 1}m ∨ki=1 M(x, r ⊕ ui) = 1.
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