An Interactive Proof System for co3SAT

This material was presented in class on October 23, 2012.

In order to construct interactive proof systems for co3SAT and, later, for TQBF, we
introduce a new technical tool: Arithmetization of boolean formulas. Consider the follow-
ing recursive definition of a function a that maps formulas on boolean variables {z;}"; to
multinomials over Z in indeterminates {X;}" ;:
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For example, if
O(1, w9, x3) = (11 V 2wy V 23) A (21 V 22 V 1T3),

then
(a(P)) (X1, Xo, X3) = (X1 +1— Xo + X3) - (X1 + Xo + 1 — X3).

Let ¢ be a 3CNF formula on n variables {x1,...,z,} with m clauses {cy,...,¢,}. Each
clause is itself a formula c;(z;,, %4y, 2;,) on three of the variables in {zy,...,2,}, and any
truth assignment (by,...,b,) to the variables in ¢ either satisfies of falsifies ¢;. In the
multinomial a(¢), there is a factor a(c;) that corresponds to ¢;, and a(c;) (X, Xiy, Xis)
takes on the value 0, 1, 2, or 3 on (a(by),...,a(b,)), depending upon whether 0, 1, 2, or 3 of
the literals in ¢;(b;,, b;,, b;,) are true. Moreover, a(c;) is 0 on (a(by), ..., a(b,)) if and only if
(b1,...,by) falsifies ¢;. Since a(¢) is just the product of the a(c;)’s, 1 < j < m, the value of
a(¢)(a(by),...,a(b,)) is in the interval [0,3™], for any truth assignment (by,...,b,). Using
these basic facts about arithmetization, we have

Fact 1. For any truth assignment (by,...,b,),

S(bi, ... b)) =F —— a(@)(albr), ... a(by)) = 0.

Fact 2.
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Fact 3.

GEBSAT «— Y > o Y (a@)(alby), ..., a(by) =0
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Now choose a prime p in the interval (27-3™, 2"+1.3™) (the existence of which is guaranteed
by Chebyshev’s Theorem, aka Bertrand’s Postulate). For the rest of this lecture, we take
a(¢) to be a multinomial in Z,[ X1, ..., X,] instead of Z[X;, ..., X,]. Fact 2 guarantees that
there is no wraparound when the computation is done mod p and hence, together with Fact
3, gives us

Fact 4.

G E3SAT «— > > o > (a(¢)(alb),...,a(by)) =0 (mod p).
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We will give a general sum-check protocol that allows the prover to convince the verifier
of the truth of claims of the form

SN o > hlaz . z) = g (mod p),

z1€{0,1} 22€{0,1} zn€{0,1}

where m is the maximum degree of any variable in h and p is a prime that is singly exponential
in n and m. It will be a public-coin protocol, and hence we use Merlin (M) and Arthur (A)
to refer to the prover and verifier, respectively. The special case in which A = a(¢) for some
3CNF formula ¢ and g = 0 allows Merlin to convince Arthur that ¢ is not in 3SAT, because
the protocol can start with Merlin’s sending Arthur a prime in the interval (2" -3™, 27 +1.3m)
and Arthur’s verifying that it is indeed prime. Note that, although Arthur cannot evaluate a
multinomial expression of the form 37, cop oy 2 opeqrry *  2op,eqrry(@(@))(albr), - .. a(by)),
he can write it down, because its size is polynomial in n and m. Moreover, Arthur can
evaluate h(z1,2y,. .., 2,) for any fixed vector (z1,2s,...,2,) € Zy. For z; not equal to 0 or
1, this expression does not correspond to a value of ¢, even if h is of the form a(¢), but it is
still perfectly well defined as the value of an n-variable multinomial over Z,.
For any fixed (29,...,2,), h(X1, 22, ..., 2,) is a univariate polynomial over Z,. Let

hX) = Y o Y WXz, ).
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Then
Z Z Z h(z1, 22,...,2,) = q (mod p) <— h1(0) + hy(1) = ¢ (mod p).

z1€{0,1} 22€{0,1} zn€{0,1}

Sum-Check Protocol:
Input: h(Xy,...,X,), ¢, and p satisfying the above conditions
Merlin’s Claim: » . o513 2 o,cqo1) " 2ummefoy (21522, - 20) = ¢ (mod p)

A: If n = 1, check that h(0) + h(1) = g (mod p) and accept if and only if it is. If n > 1,
ask M for hl(Xl)

M: Send h;.

A: Reject if hy(0) + hi(1) # ¢ (mod p). Else, choose a € Z, and recursively use the
sum-check protocol to have M prove that

Z Z h(a,za, ..., %,) = hi(a) (mod p).

22€{0,1} zn€{0,1}




Clearly, if Merlin is making a correct claim, then Arthur will always accept, because
Merlin can always send the correct univariate polynomial h;. On the other hand, if Merlin
is making an incorrect claim, then Arthur will reject with probability at least (1 — %)” We
prove this by induction on n. Note first, however, that (1— )" > (1— %), and p > 2"-3™.

Clearly, Arthur will always reject if n = 1 and h(0) + k(1) # ¢ (mod p). So assume that
the rejection probability is at least (1 — %)”_1 when the number of variables is n — 1, and
Merlin makes an incorrect claim. Now assume that Merlin claims incorrectly that

> Y 0 > bz ) = q (mod p)

21€{0,1} 22€{0,1} zn€{0,1}

and runs the protocol with Arthur. When asked to provide a univariate polynomial, Merlin
cannot send hi(X), because hi(0) + hi1(1) Z g (mod p). So Merlin must send some other
univariate polynomial s1(X7) of degree m with the property that s1(0)+s1(1) = ¢ (mod p).
When he and Arthur proceed to the recursive call of the sum-check protocol, Merlin will only
be making a correct claim if s;(a) = hi(a) (mod p) for the a that Arthur chooses uniformly
at random from Z,. Because s; and h; are different degree-m, univariate polynomials over
Z,, the probability that they have the same value on a uniformly randomly chosen a is at
most % (which is the probability that this random a is one of the at most m distinct roots of
the degree-m polynomial (s; — h1)(X7)). Thus, the probability that Arthur rejects Merlin’s
incorrect claim about this n-variable h is at least 1 — % (the probability that Merlin must
make an incorrect claim in the recursive call) times (1 — %)”_1 (the probability that Arthur

rejects an incorrect claim about an (n — 1)-variable polynomial in the recursive call), i.e., at
least (1 —2)".



