An Interactive Proof System for co3SAT

This material was presented in class on October 23, 2012.

In order to construct interactive proof systems for co3SAT and, later, for TQBF, we introduce a new technical tool: Arithmetization of boolean formulas. Consider the following recursive definition of a function a that maps formulas on boolean variables $\{x_i\}_{i=1}^n$ to multinomials over \mathbb{Z} in indeterminates $\{X_i\}_{i=1}^n$:

ϕ	$a(\phi)$
F	0
Т	1
x_i	X_i
$\neg x_i$	$(1-X_i)$
$f_1 \lor f_2$	$a(f_1) + a(f_2)$
$f_1 \wedge f_2$	$a(f_1) \cdot a(f_2)$

For example, if

$$\phi(x_1, x_2, x_3) = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3),$$

then

$$(a(\phi))(X_1, X_2, X_3) = (X_1 + 1 - X_2 + X_3) \cdot (X_1 + X_2 + 1 - X_3).$$

Let ϕ be a 3CNF formula on n variables $\{x_1, \ldots, x_n\}$ with m clauses $\{c_1, \ldots, c_m\}$. Each clause is itself a formula $c_j(x_{i_1}, x_{i_2}, x_{i_3})$ on three of the variables in $\{x_1, \ldots, x_n\}$, and any truth assignment (b_1, \ldots, b_n) to the variables in ϕ either satisfies of falsifies c_j . In the multinomial $a(\phi)$, there is a factor $a(c_j)$ that corresponds to c_j , and $a(c_j)(X_{i_1}, X_{i_2}, X_{i_3})$ takes on the value 0, 1, 2, or 3 on $(a(b_1), \ldots, a(b_n))$, depending upon whether 0, 1, 2, or 3 of the literals in $c_j(b_{i_1}, b_{i_2}, b_{i_3})$ are true. Moreover, $a(c_j)$ is 0 on $(a(b_1), \ldots, a(b_n))$ if and only if (b_1, \ldots, b_n) falsifies c_j . Since $a(\phi)$ is just the product of the $a(c_j)$'s, $1 \le j \le m$, the value of $a(\phi)(a(b_1), \ldots, a(b_n))$ is in the interval $[0, 3^m]$, for any truth assignment (b_1, \ldots, b_n) . Using these basic facts about arithmetization, we have

Fact 1. For any truth assignment (b_1, \ldots, b_n) ,

$$\phi(b_1,\ldots,b_n)=F \iff a(\phi)(a(b_1),\ldots,a(b_n))=0.$$

Fact 2.

$$0 \le \sum_{b_1 \in \{T,F\}} \sum_{b_2 \in \{T,F\}} \cdots \sum_{b_n \in \{T,F\}} (a(\phi))(a(b_1), \dots, a(b_n)) \le 2^n \cdot 3^m.$$

Fact 3.

$$\phi \notin 3SAT \iff \sum_{b_1 \in \{T,F\}} \sum_{b_2 \in \{T,F\}} \cdots \sum_{b_n \in \{T,F\}} (a(\phi))(a(b_1), \dots, a(b_n)) = 0$$

Now choose a prime p in the interval $(2^n \cdot 3^m, 2^{n+1} \cdot 3^m)$ (the existence of which is guaranteed by Chebyshev's Theorem, aka Bertrand's Postulate). For the rest of this lecture, we take $a(\phi)$ to be a multinomial in $\mathbb{Z}_p[X_1, \ldots, X_n]$ instead of $\mathbb{Z}[X_1, \ldots, X_n]$. Fact 2 guarantees that there is no wraparound when the computation is done mod p and hence, together with Fact 3, gives us

Fact 4.

$$\phi \notin 3\text{SAT} \iff \sum_{b_1 \in \{T,F\}} \sum_{b_2 \in \{T,F\}} \cdots \sum_{b_n \in \{T,F\}} (a(\phi))(a(b_1), \dots, a(b_n)) \equiv 0 \pmod{p}.$$

We will give a general *sum-check protocol* that allows the prover to convince the verifier of the truth of claims of the form

$$\sum_{z_1 \in \{0,1\}} \sum_{z_2 \in \{0,1\}} \cdots \sum_{z_n \in \{0,1\}} h(z_1, z_2, \dots, z_n) \equiv q \pmod{p},$$

where *m* is the maximum degree of any variable in *h* and *p* is a prime that is singly exponential in *n* and *m*. It will be a public-coin protocol, and hence we use Merlin (M) and Arthur (A) to refer to the prover and verifier, respectively. The special case in which $h = a(\phi)$ for some 3CNF formula ϕ and q = 0 allows Merlin to convince Arthur that ϕ is not in 3SAT, because the protocol can start with Merlin's sending Arthur a prime in the interval $(2^n \cdot 3^m, 2^{n+1} \cdot 3^m)$ and Arthur's verifying that it is indeed prime. Note that, although Arthur cannot evaluate a multinomial expression of the form $\sum_{b_1 \in \{T,F\}} \sum_{b_2 \in \{T,F\}} \cdots \sum_{b_n \in \{T,F\}} (a(\phi))(a(b_1), \ldots, a(b_n))$, he can write it down, because its size is polynomial in *n* and *m*. Moreover, Arthur can evaluate $h(z_1, z_2, \ldots, z_n)$ for any fixed vector $(z_1, z_2, \ldots, z_n) \in \mathbb{Z}_p^n$. For z_i not equal to 0 or 1, this expression does not correspond to a value of ϕ , even if *h* is of the form $a(\phi)$, but it is still perfectly well defined as the value of an *n*-variable multinomial over \mathbb{Z}_p .

For any fixed (z_2, \ldots, z_n) , $h(X_1, z_2, \ldots, z_n)$ is a univariate polynomial over Z_p . Let

$$h_1(X_1) = \sum_{z_2 \in \{0,1\}} \cdots \sum_{z_n \in \{0,1\}} h(X_1, z_2, \dots, z_n).$$

Then

$$\sum_{z_1 \in \{0,1\}} \sum_{z_2 \in \{0,1\}} \cdots \sum_{z_n \in \{0,1\}} h(z_1, z_2, \dots, z_n) \equiv q \pmod{p} \iff h_1(0) + h_1(1) \equiv q \pmod{p}.$$

Sum-Check Protocol:

Input: $h(X_1, \ldots, X_n)$, q, and p satisfying the above conditions Merlin's Claim: $\sum_{z_1 \in \{0,1\}} \sum_{z_2 \in \{0,1\}} \cdots \sum_{z_n \in \{0,1\}} h(z_1, z_2, \ldots, z_n) \equiv q \pmod{p}$

A: If n = 1, check that $h(0) + h(1) \equiv q \pmod{p}$ and accept if and only if it is. If n > 1, ask M for $h_1(X_1)$.

M: Send h_1 .

A: Reject if $h_1(0) + h_1(1) \not\equiv q \pmod{p}$. Else, choose $a \in_R \mathbb{Z}_p$ and recursively use the sum-check protocol to have M prove that

$$\sum_{z_2 \in \{0,1\}} \cdots \sum_{z_n \in \{0,1\}} h(a, z_2, \dots, z_n) \equiv h_1(a) \pmod{p}.$$

Clearly, if Merlin is making a correct claim, then Arthur will always accept, because Merlin can always send the correct univariate polynomial h_1 . On the other hand, if Merlin is making an incorrect claim, then Arthur will reject with probability at least $(1 - \frac{m}{p})^n$. We prove this by induction on n. Note first, however, that $(1 - \frac{m}{p})^n \ge (1 - \frac{mn}{p})$, and $p > 2^n \cdot 3^m$.

Clearly, Arthur will always reject if n = 1 and $h(0) + h(1) \not\equiv q \pmod{p}$. So assume that the rejection probability is at least $(1 - \frac{m}{p})^{n-1}$ when the number of variables is n - 1, and Merlin makes an incorrect claim. Now assume that Merlin claims incorrectly that

$$\sum_{z_1 \in \{0,1\}} \sum_{z_2 \in \{0,1\}} \cdots \sum_{z_n \in \{0,1\}} h(z_1, z_2, \dots, z_n) \equiv q \pmod{p}$$

and runs the protocol with Arthur. When asked to provide a univariate polynomial, Merlin cannot send $h_1(X)$, because $h_1(0) + h_1(1) \not\equiv q \pmod{p}$. So Merlin must send some other univariate polynomial $s_1(X_1)$ of degree m with the property that $s_1(0) + s_1(1) \equiv q \pmod{p}$. When he and Arthur proceed to the recursive call of the sum-check protocol, Merlin will only be making a correct claim if $s_1(a) \equiv h_1(a) \pmod{p}$ for the a that Arthur chooses uniformly at random from \mathbb{Z}_p . Because s_1 and h_1 are different degree-m, univariate polynomials over \mathbb{Z}_p , the probability that they have the same value on a uniformly randomly chosen a is at most $\frac{m}{p}$ (which is the probability that this random a is one of the at most m distinct roots of the degree-m polynomial $(s_1 - h_1)(X_1)$). Thus, the probability that Arthur rejects Merlin's incorrect claim in the recursive call) times $(1 - \frac{m}{p})^{n-1}$ (the probability that Arthur rejects an incorrect claim about an (n-1)-variable polynomial in the recursive call), *i.e.*, at least $(1 - \frac{m}{p})^n$.