The Karp-Lipton Theorem

This proof was presented in class on October 2, 2012. **Theorem:** If NP \subseteq P/poly, then PH = Σ_2^P .

Proof: It suffices to show that, if NP \subseteq P/poly, then Π_2 SAT $\in \Sigma_2^P$. Recall that Π_2 SAT consists of all true QBFs of the form

$$\forall u \in \{0, 1\}^n \; \exists v \in \{0, 1\}^n \; \phi(u, v) = 1, \tag{1}$$

where ϕ is a quantifier-free boolean formula.

Note that (1) is of the form $\forall u \in \{0, 1\}^n$ [SAT]; that is, for any fixed ϕ and u, the part of (1) that begins with \exists is just $\exists v \in \{0, 1\}^n \phi_u(v) = 1$, where $\phi_u(\cdot)$ is the formula $\phi(\cdot, \cdot)$ with the first n boolean variables instantiated as in u and the last n boolean variables left free. This is, of course, a SAT instance.

Our hypothesis is that SAT \in P/poly. So there is a polynomial p and a p(n)-sized circuit family $\{C_n\}$ such that

$$\forall \phi, u \ C_n(\phi, u) = 1 \quad \longleftrightarrow \quad \exists v \in \{0, 1\}^n \phi_u(v) = 1.$$

Here, " $C_n(\phi, u)$ " means "the circuit C_n evaluated on the SAT instance determined by ϕ and u."

Recall that there is a polynomial-sized circuit family $\{C'_n\}$ that reduces the *search* problem for SAT to the *decision* problem for SAT. Given an oracle that decides SAT, a circuit C'_n can produce an assignment that satisfies a formula, provided such an assignment exists. Whenever C'_n needs to make an oracle call on a k-variable formula and feed the answer to a gate g, it can instead feed that formula to C_k and feed the output to g. There will be a polynomial number q(n) of such calls, the sizes $k_1, \ldots, k_{q(n)}$ are all polynomial in n, and the circuits C_{k_i} are of size polynomial in k_i . Therefore, under the hypothesis that SAT $\in P/poly$, we can "compose" these circuit families $\{C_n\}$ and $\{C'_n\}$ to get a polynomial-sized circuit family $\{D_n\}$ that, given a SAT instance as input, produces a satisfying assignment if one exists. (We need the hypothesis to assert the existence of $\{C_n\}$ but not to assert the existence of $\{C'_n\}$.) Let w(n) be the (polynomial) number of bits needed to encode D_n . Denote by $D_n(\phi, u)$ the output of D_n on the formula ϕ_u determined by ϕ and u.

Now consider the following Σ_2^p expression:

$$\exists D_n \in \{0,1\}^{w(n)} \ \forall u \in \{0,1\}^n \ \phi_u(D_n(\phi,u)) = 1.$$
(2)

We have just argued that, if (1) is true and NP \subseteq P/poly, then (2) is true. On the other hand, if (1) is false, then (2) is also false, regardless of whether NP \subseteq P/poly. Thus, under the assumption that NP \subseteq P/poly, the Π_2 SAT formula (1) is equivalent to the Σ_2^p expression (2).