
CPSC 468/568: Lecture 6 (Sept. 18, 2012)

This lecture began with Def. 4.1 in the Arora-Barak book [AB] (space-bounded compu-
tation, both deterministic and nondeterministic), the notion of “configuration graphs” (as
defined in the text immediately preceding Claim 4.4 in [AB]), the fact that

DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n))),

and the notation PSPACE, NPSPACE, L, and NL (see Def. 4.5 in [AB]).

Proof that PATH is in NL:
A PATH instance is a triple (G, s, t), where G is a directed graph, and {s, t} ⊆ V (G).

The yes instances are those in which there is a path from s to t in G. Note that, if V (G) =
{1, 2, . . . , n}, the instance (G, s, t) is of length c · n2, for some positive constant c, assuming
that we encode G as an n × n matrix of bits in which the (i, j)th bit is a 1 if and only if
the arc (i, j) is in A(G). (Note “arc” instead of “edge” and A(G) instead of E(G), in order
to emphasize that G is a directed graph. PATH is a totally different, easier problem for
undirected graphs.) So we seek a nondeterministic algorithm that decides PATH in space
O(log(c · n2)) = O(log n). Here is one such algorithm:

PATH(G, s, t)
{
i← 0;
u← s;
WHILE(i ≤ n)
{

IF (u = t) THEN OUPUT(ACCEPT) AND HALT;
GUESS u′ ∈ V (G);
IF ((u, u′) ∈ A(G)) THEN u← u′;
i← i+ 1;
}
OUTPUT(REJECT) AND HALT;
}

Things to notice about this algorithm:

◦ If there is a path from s to t, then there must be one of length less than or equal to n,
because there are only n nodes in G.

◦ We cannot simply guess a path of length at most n in one fell swoop, because that
would require Ω(n log n) bits of workspace. Thus, we guess one node at a time and
verify that all of the requisite arcs are there.

◦ It is clear that the values of the variables i, u, and u′ require O(log n) workspace. Not
as apparent, but still not hard, is that the bit on the input tape that tells us whether
(u, u′) ∈ A(G) can be read in space O(log n) using a counter.

In fact, PATH is NL-complete; we do not yet have the right notion of reduction to prove
that, but we will get to it.

Proof of Savitch’s Theorem:
Let L be a language recognized in space O(s(n)) by nondeterministic Turing Machine

W , and let x ∈ {0, 1}n be an input that may or may not be in L. Consider the configuration
graph GW,x. We will define a deterministic machine that, on input x, decides whether there
is a path from Cx

START to Cx
ACCEPT, where these are the unique START and ACCEPT nodes

in V (GW,x). Recall that, if there is a path from Cx
START to Cx

ACCEPT, there is one of length
O(2c·s(n)), for some positive constant c, i.e., that |V (GW,x)| = O(2c·s(n)).

The deterministic algorithm that we provide actually solves the more general decision
problem REACH(u, v, i), which is 1 if there exists a path from u to v in GW,x of length at
most 2i and 0 if there is no such path. The algorithm is defined recursively.

For i = 0 (the base case of the recursion), the algorithm simply checks whether v is one
of the two configurations that can be reached from u in one step, i.e., in one application of
one of the transition functions δ0 and δ1 that define W . (Think about why that can be done
in space O(s(n)).)

For i > 0, we ask whether there is a configuration z such that REACH(u, z, i − 1) and
REACH(z, v, i− 1) are both 1. The two crucial points are:

◦ We can cycle through all possible candidates for z and, having concluded that a par-
ticular zj did not have the requisite property, reuse the space we just used for zj to do
the computation for zj+1.

◦ For a particular z, we can compute REACH(u, z, i − 1) and then reuse the space to
compute REACH(z, v, i− 1).

Let SM,i be the space required to compute REACH(u, v, i) on a configuration graph GW,x

with M nodes. To decide whether there is exists a path from u to v, we would use space at
most SM,logM . We have the recurrence relation

SM,i = SM,i−1 +O(logM),

because space SM,i−1 is needed for recursive calls, and space O(logM) is needed to write
down the “midpoint configuration” z. Solving this recurrence relation gives us SM,logM =
O((logM)2). For nondeterministic machine W , we have M = O(2c·s(n)), and thus SM,logM =
O((s(n))2).

Note that Savitch’s Theorem implies that PSPACE = NPSPACE.

2

