CPSC 468/568: Lecture 6 (Sept. 18, 2012)

This lecture began with Def. 4.1 in the Arora-Barak book [AB] (space-bounded computation, both deterministic and nondeterministic), the notion of "configuration graphs" (as defined in the text immediately preceding Claim 4.4 in $[\mathrm{AB}]$), the fact that

$$
\operatorname{DTIME}(S(n)) \subseteq \operatorname{SPACE}(S(n)) \subseteq \operatorname{NSPACE}(S(n)) \subseteq \operatorname{DTIME}\left(2^{O(S(n))}\right),
$$

and the notation PSPACE, NPSPACE, L, and NL (see Def. 4.5 in [AB]).

Proof that PATH is in NL:

A PATH instance is a triple (G, s, t), where G is a directed graph, and $\{s, t\} \subseteq V(G)$. The yes instances are those in which there is a path from s to t in G. Note that, if $V(G)=$ $\{1,2, \ldots, n\}$, the instance (G, s, t) is of length $c \cdot n^{2}$, for some positive constant c, assuming that we encode G as an $n \times n$ matrix of bits in which the $(i, j)^{t h}$ bit is a 1 if and only if the arc (i, j) is in $A(G)$. (Note "arc" instead of "edge" and $A(G)$ instead of $E(G)$, in order to emphasize that G is a directed graph. PATH is a totally different, easier problem for undirected graphs.) So we seek a nondeterministic algorithm that decides PATH in space $O\left(\log \left(c \cdot n^{2}\right)\right)=O(\log n)$. Here is one such algorithm:

```
PATH(G,s,t)
{
    i\leftarrow0;
    u\leftarrows;
    WHILE ( }i\leqn
    {
        IF (u=t) THEN OUPUT(ACCEPT) AND HALT;
        GUESS }\mp@subsup{u}{}{\prime}\inV(G)
        IF ((u,\mp@subsup{u}{}{\prime})\inA(G)) THEN }u\leftarrow\mp@subsup{u}{}{\prime}
        i\leftarrowi+1;
    }
    OUTPUT(REJECT) AND HALT;
}
```

Things to notice about this algorithm:

- If there is a path from s to t, then there must be one of length less than or equal to n, because there are only n nodes in G.
- We cannot simply guess a path of length at most n in one fell swoop, because that would require $\Omega(n \log n)$ bits of workspace. Thus, we guess one node at a time and verify that all of the requisite arcs are there.
- It is clear that the values of the variables i, u, and u^{\prime} require $O(\log n)$ workspace. Not as apparent, but still not hard, is that the bit on the input tape that tells us whether $\left(u, u^{\prime}\right) \in A(G)$ can be read in space $O(\log n)$ using a counter.

In fact, PATH is NL-complete; we do not yet have the right notion of reduction to prove that, but we will get to it.

Proof of Savitch's Theorem:

Let L be a language recognized in space $O(s(n))$ by nondeterministic Turing Machine W, and let $x \in\{0,1\}^{n}$ be an input that may or may not be in L. Consider the configuration graph $G_{W, x}$. We will define a deterministic machine that, on input x, decides whether there is a path from $C_{\text {START }}^{x}$ to C_{ACCEPT}^{x}, where these are the unique START and ACCEPT nodes in $V\left(G_{W, x}\right)$. Recall that, if there is a path from $C_{\text {START }}^{x}$ to C_{ACCEPT}^{x}, there is one of length $O\left(2^{c \cdot s(n)}\right)$, for some positive constant c, i.e., that $\left|V\left(G_{W, x}\right)\right|=O\left(2^{c \cdot s(n)}\right)$.

The deterministic algorithm that we provide actually solves the more general decision problem $\operatorname{REACH}(u, v, i)$, which is 1 if there exists a path from u to v in $G_{W, x}$ of length at most 2^{i} and 0 if there is no such path. The algorithm is defined recursively.

For $i=0$ (the base case of the recursion), the algorithm simply checks whether v is one of the two configurations that can be reached from u in one step, i.e., in one application of one of the transition functions δ_{0} and δ_{1} that define W. (Think about why that can be done in space $O(s(n))$.)

For $i>0$, we ask whether there is a configuration z such that $\operatorname{REACH}(u, z, i-1)$ and $\operatorname{REACH}(z, v, i-1)$ are both 1 . The two crucial points are:

- We can cycle through all possible candidates for z and, having concluded that a particular z_{j} did not have the requisite property, reuse the space we just used for z_{j} to do the computation for z_{j+1}.
- For a particular z, we can compute $\operatorname{REACH}(u, z, i-1)$ and then reuse the space to compute $\operatorname{REACH}(z, v, i-1)$.

Let $S_{M, i}$ be the space required to compute $\operatorname{REACH}(u, v, i)$ on a configuration graph $G_{W, x}$ with M nodes. To decide whether there is exists a path from u to v, we would use space at most $S_{M, \log M}$. We have the recurrence relation

$$
S_{M, i}=S_{M, i-1}+O(\log M),
$$

because space $S_{M, i-1}$ is needed for recursive calls, and space $O(\log M)$ is needed to write down the "midpoint configuration" z. Solving this recurrence relation gives us $S_{M, \log M}=$ $O\left((\log M)^{2}\right)$. For nondeterministic machine W, we have $M=O\left(2^{c \cdot s(n)}\right)$, and thus $S_{M, \log M}=$ $O\left((s(n))^{2}\right)$.

Note that Savitch's Theorem implies that PSPACE $=$ NPSPACE .

