
CPSC 468/568: Lecture 7 (Sept. 20, 2012)

This lecture began with definitions of implicitly logspace computable, logspace reducibil-
ity, NL completeness, and read-once certificates and with the proof that PATH is NL-
complete. See Chapter 4 of Arora-Barak.

The Immerman-Szelepcsenyi Theorem: NL = coNL

Proof:
Throughout, points that you are encouraged to think through and justify in detail are

marked by “(WHY?).”
Recall first that PATH is NL-complete and, equivalently, that PATH is coNL-complete.

Thus, it suffices to show that PATH, the set of triples (G, s, t) in which G is a directed graph
that does not contain a path from s to t, is in NL.

We will do so by exhibiting a deterministic, logspace verifier that takes as input both
an instance (G, s, t) and a certificate of this instance’s membership in PATH. As usual, the
tape on which the instance is written is read-only. New to our discussion of nondeterministic
logspace is the requirement that the tape on which the certificate is written is not just
read-only but read-once, left-to-right. The work/output tapes of this machine are, as usual,
read/write, and they are the only tapes that are restricted to logspace.

If V (G) = {1, 2, . . . , n}, and G is encoded on the input tape as an n×n adjacency matrix,
then the input is of length O(n2). Thus, we need certificates of length poly(n2) = poly(n)
and space complexity O(log(O(n2))) = O(log n).

Let Ci = {v ∈ V (G) such that v is reachable from s by a path of length at most i}.
Note that C0 = {s} and that Cn contains all nodes in G that are reachable from s by any
path whatsoever. (WHY?) The desired certificate that (G, s, t) is in PATH must therefore
certify the fact that t 6∈ Cn. It comprises three types of “subcertificates,” as follows.

CERT1(v, i, qi) proves that v 6∈ Ci, given that |Ci| = qi.
CERT2(v, i, qi−1) proves that v 6∈ Ci, given that |Ci−1| = qi−1.
CERT3(i, qi, qi−1) proves that |Ci| = qi, given that |Ci−1| = qi−1.

Overall, to prove that (G, s, t) 6∈ PATH, we use the certificate

CERT3(1, q1, 1)CERT3(2, q2, q1) · · ·CERT3(n, qn, qn−1)CERT1(t, n, qn).

That is, starting with the obvious fact that |C0| = 1, the logspace verifier first checks,
for each successive i, 2 ≤ i ≤ n, that |Ci| = qi; once it has checked that |Cn| = qn, it
checks that t is not one of the qn nodes in Cn. If each of the constituent subcertificates is
polynomial-length and logspace verifiable in a read-once, left-to-right manner, then so is the
entire certificate. (WHY?)

CERT1(v, i, qi) is a list of qi paths to all of the nodes reachable from s along paths
of length at most i. If we denote by `(1), . . . , `(qi) the lengths of these paths, then this
subcertificate has the form:

1

〈u1
1u

1
2 . . . u

1
`(1)〉〈u2

1u
2
2 . . . u

2
`(2)〉 · · · 〈u

qi
1 u

qi
2 . . . uqi

`(qi)
〉,

where uj
1 = s, for 1 ≤ j ≤ qi, and u1

`(1) < u2
`(2) < · · · < uqi

`(qi)
. That is, all of the paths start

at s, and we list them in increasing order of the labels of their terminal vertices.
It suffices for the deterministic, logspace verifier to check the following. (WHY?)

• The total number of paths in the subcertificate is qi.

• v is not in any of the paths.

• For 1 ≤ j ≤ qi − 1, uj
`(j) < uj+1

`(j+1).

• The arcs uj
k → uj

k+1 are all in E(G).

• s = uj
1, for 1 ≤ j ≤ qi.

• `(j) ≤ i, for 1 ≤ j ≤ qi.

Indeed, all of these conditions can be verified in deterministic logspace in a read-once,
left-to-right manner. (WHY?)

CERT2(v, i, qi−1) is the same as CERT1(v, i− 1, qi−1), but its verification procedure con-
tains one more condition: The arc uj

`(j) → v is not in E(G) for any j, 1 ≤ j ≤ qi−1. That is,
if one knows all of the nodes that can be reached by paths of length at most i− 1, checking
that v is not reachable in one step from any of them suffices to show that v cannot be reached
by a path of length at most i.

Finally, CERT3(i, qi, qi−1) consists of n subcertificates D1, . . . , Dn. If j ∈ Ci, then Dj is
a path from s to j of length at most i. If j 6∈ Ci, then Dj = CERT2(j, i, qi−1). The verifier
reads them all left-to-right, checks their validity, and checks that exactly qi of them certify
that the vertex j in question is a member of Ci.

2

