Toda's Theorem

This material was presented in class on November 15, 2012. We wish to prove

Toda’s Theorem: PH C P#SATI That is, for any language L € PH, there is a polynomial-
time oracle Turing Machine that decides membership in L when given access to a #SAT oracle;
moreover, on any input x, the oracle machine makes just one #SAT query.

We use the following lemmas from Chapter 17 of Arora-Barak.

Lemma 17.17: For any constant ¢ € A/, there exists a probabilistic polynomial-time algorithm
f such that for any m and any ) SAT instance v,

P is true — Pr(f(¢) € ®SAT]>1-2""
¥ is false — Pr[f(¢) € ®SAT) <27™

Lemma 17.22: There is a deterministic polynomial-time transformation 7' that maps CNF
formulas to CNF formulas such that 3 = T(«, 1) has following property:

a € ®SAT — #(B) = —1 (mod 2'1)
a g ®SAT — #(B) =0 (mod 2'+1)

A proof of Lemma 17.17 was presented in class on November 13, 2012 and can be found on the
course website. A proof of Lemma 17.22 is presented below. We now show how to use them to
prove Toda’s Theorem.

Note first that it suffices to reduce membership in X.SAT to a single #SAT query, for an
arbitrary ¢ > 1, because every L in the PH is in X for some ¢ and hence many-to-one reducible
to X SAT.

Consider the probabilistic polynomial-time algorithm f in the Lemma 17.17 with m = 2.
Instead of treating f as a probabilistic algorithm, we can treat it as a deterministic function
of two arguments, namely the ¥.SAT instance ¢ and the random string r. Let R = |r|, and
I = R+ 1, and consider the formula,

> #T(f(w,r), 1Y ()

re{0,1}*

If ¢ is true, then at least % of the terms being summed in (%) are —1 mod 2!*1, and the rest
are 0 mod 2'*1. Thus, when ¢ is true, (x) falls into the interval [-2%, —[2 x 28] mod 2!*1.

If 4 is false, then at least % of the terms being summed in (x) are 0 mod 2'*!, and the rest
are —1 mod 27! Thus, () falls into the interval [—[} x 25],0] mod 27! in this case.

Because 2/T1 > 28+1 the two intervals in these two cases are disjoint. Hence, if we can show
how to compute (%) in P#SATH we can decide which of the two intervals it falls into to get the
truth value of .

Note that 3 = T(f(x,7),1') is a SAT instance. Thus, we can apply the parsimonious Cook-
Levin reduction to the nondeterministic, polynomial-time Turing Machine that takes (v, r) as
input and accepts if and only there exists a witness y of length polynomial in the input size that
satisfies 8. Call the output of that reduction T'(¢),r,y,2). (The string z represents the extra
variables used in the Cook-Levin reduction to encode the sequence of snapshots.) Let I'y(r,y, 2)
denote I'(¢), 7, y, 2) for a fixed formula 1, and let CL denote the (polynomial-time computable,
many-to-one) reduction function. Then,



#Fdl (’I", Y, Z)
= [{(r,y,2) | (y.2) satisfies CL(T(f(¢,7),1))}|
{(r,y,2) | (y,2) satisfies CL(T(f(y,r),1"+2))}]
= ZT.E{O,I}R the number of (y,z) pairs that satisfy T(f(1,7r),1171+2)
(because the reduction is parsimonious)
= Z?"E{O,l}R #T(f(wv 7"), 1|T‘+2)
= (%)
Thus, given ¢ and r, we can first compute the value of 5, apply the parsimonious Cook-Levin
reduction to it to obtain I'y (7, y, z), then get the value of () by making one query to the #SAT
oracle.

Proof of Lemma 17.22: Recall that we have defined addition and multiplication operators on
CNF formulas with the properties that #(¢ + 7) = #(¢) + #(7) and #(¢ - 7) = #(¢) - #(7).
(See formulas 17.5 and 17.7.) Using these operators, we can construct from any CNF formula 7
a related CNF formula 473 4 374 that, for any i > 0, satisfies

#(7) =0 (mod 22i) — #4713 +37") =0 (mod 22i+1) (%)

and ‘ ‘
#(1) = —1 (mod 2%') — #(473 +37%) = —1 (mod 221“). (s % %)

To prove (**), let B = #(7) = C - 22'. Then
#(473 +37%) = 4B® + 3B* = B2(4B+3B%) = C%- 22" . (4B +3B2) =0 (mod 22" ).
To prove (***), let B = #(7) = C - 22 — 1. Then
#(47% + 37%) = 4B% + 3B*
=B?-B-(4+3B)
=(C-22 —1)2.(C-22 —1)-(3C-22 +1)
=(C?. 22" 2022 + 1)(3C?- 22" —20 2% — 1)
=(-20-2% +1)(-2C 2% —1) = —1 (mod 22" )

2'L'+1

To get a polynomial-time transformation 7" with the desired property, let ¢y = «, ¥;y1 =
4¢§ + 311);17 and B = ’l/}[log(l—i-l)'\ .



