Toda's Theorem

This material was presented in class on November 15, 2012. We wish to prove

Toda's Theorem: $PH \subseteq P^{\#SAT[1]}$. That is, for any language $L \in PH$, there is a polynomialtime oracle Turing Machine that decides membership in L when given access to a #SAT oracle; moreover, on any input x, the oracle machine makes just one #SAT query.

We use the following lemmas from Chapter 17 of Arora-Barak.

Lemma 17.17: For any constant $c \in \mathcal{N}$, there exists a probabilistic polynomial-time algorithm f such that for any m and any \sum_{c} SAT instance ψ ,

$$\psi$$
 is true $\longrightarrow Pr[f(\psi) \in \oplus SAT] \ge 1 - 2^{-m}$
 ψ is false $\longrightarrow Pr[f(\psi) \in \oplus SAT] \le 2^{-m}$

Lemma 17.22: There is a deterministic polynomial-time transformation T that maps CNF formulas to CNF formulas such that $\beta = T(\alpha, 1^{l})$ has following property:

$$\alpha \in \oplus \text{SAT} \longrightarrow \#(\beta) = -1 \pmod{2^{l+1}}$$
$$\alpha \notin \oplus \text{SAT} \longrightarrow \#(\beta) = 0 \pmod{2^{l+1}}$$

A proof of Lemma 17.17 was presented in class on November 13, 2012 and can be found on the course website. A proof of Lemma 17.22 is presented below. We now show how to use them to prove Toda's Theorem.

Note first that it suffices to reduce membership in $\Sigma_c SAT$ to a single #SAT query, for an arbitrary $c \geq 1$, because every L in the PH is in Σ_c^P for some c and hence many-to-one reducible to $\Sigma_c SAT$.

Consider the probabilistic polynomial-time algorithm f in the Lemma 17.17 with m = 2. Instead of treating f as a probabilistic algorithm, we can treat it as a deterministic function of two arguments, namely the Σ_c SAT instance ψ and the random string r. Let R = |r|, and l = R + 1, and consider the formula,

$$\sum_{\in \{0,1\}^k} \#T(f(\psi, r), 1^l) \tag{(*)}$$

If ψ is *true*, then at least $\frac{3}{4}$ of the terms being summed in (*) are $-1 \mod 2^{l+1}$, and the rest are $0 \mod 2^{l+1}$. Thus, when ψ is *true*, (*) falls into the interval $[-2^R, -\lceil \frac{3}{4} \times 2^R \rceil] \mod 2^{l+1}$. If ψ is *false*, then at least $\frac{3}{4}$ of the terms being summed in (*) are $0 \mod 2^{l+1}$, and the rest are $-1 \mod 2^{l+1}$. Thus, (*) falls into the interval $[-\lceil \frac{1}{4} \times 2^R \rceil, 0] \mod 2^{l+1}$ in this case. Because $2^{l+1} > 2^{R+1}$, the two intervals in these two cases are disjoint. Hence, if we can show

how to compute (*) in $P^{\#SAT[1]}$, we can decide which of the two intervals it falls into to get the truth value of ψ .

Note that $\beta = T(f(\psi, r), 1^l)$ is a SAT instance. Thus, we can apply the parsimonious Cook-Levin reduction to the nondeterministic, polynomial-time Turing Machine that takes (ψ, r) as input and accepts if and only there exists a witness y of length polynomial in the input size that satisfies β . Call the output of that reduction $\Gamma(\psi, r, y, z)$. (The string z represents the extra variables used in the Cook-Levin reduction to encode the sequence of snapshots.) Let $\Gamma_{\psi}(r, y, z)$ denote $\Gamma(\psi, r, y, z)$ for a fixed formula ψ , and let CL denote the (polynomial-time computable, many-to-one) reduction function. Then,

$$\begin{split} & \#\Gamma_{\psi}(r, y, z) \\ &= |\{(r, y, z) \mid (y, z) \text{ satisfies } CL(T(f(\psi, r), 1^{l}))\}| \\ &= |\{(r, y, z) \mid (y, z) \text{ satisfies } CL(T(f(\psi, r), 1^{|r|+2}))\}| \\ &= \sum_{r \in \{0,1\}^{R}} \text{ the number of } (y, z) \text{ pairs that satisfy } T(f(\psi, r), 1^{|r|+2}) \\ & (because the reduction is parsimonious) \\ &= \sum_{r \in \{0,1\}^{R}} \#T(f(\psi, r), 1^{|r|+2}) \\ &= (*) \end{split}$$

Thus, given ψ and r, we can first compute the value of β , apply the parsimonious Cook-Levin reduction to it to obtain $\Gamma_{\psi}(r, y, z)$, then get the value of (*) by making one query to the #SAT oracle.

Proof of Lemma 17.22: Recall that we have defined addition and multiplication operators on CNF formulas with the properties that $\#(\phi + \tau) = \#(\phi) + \#(\tau)$ and $\#(\phi \cdot \tau) = \#(\phi) \cdot \#(\tau)$. (See formulas 17.5 and 17.7.) Using these operators, we can construct from any CNF formula τ a related CNF formula $4\tau^3 + 3\tau^4$ that, for any $i \ge 0$, satisfies

$$\#(\tau) \equiv 0 \pmod{2^{2^{i}}} \longrightarrow \#(4\tau^3 + 3\tau^4) \equiv 0 \pmod{2^{2^{i+1}}}$$
(**)

and

$$\#(\tau) \equiv -1 \pmod{2^{2^{i}}} \longrightarrow \#(4\tau^3 + 3\tau^4) \equiv -1 \pmod{2^{2^{i+1}}}. \quad (***)$$

To prove (**), let $B = #(\tau) = C \cdot 2^{2^i}$. Then

$$#(4\tau^3 + 3\tau^4) = 4B^3 + 3B^4 = B^2(4B + 3B^2) = C^2 \cdot 2^{2^{i+1}} \cdot (4B + 3B^2) \equiv 0 \pmod{2^{2^{i+1}}}$$

To prove (***), let $B = #(\tau) = C \cdot 2^{2^{i}} - 1$. Then

$$\begin{aligned} \#(4\tau^3 + 3\tau^4) &= 4B^3 + 3B^4 \\ &= B^2 \cdot B \cdot (4+3B) \\ &= (C \cdot 2^{2^i} - 1)^2 \cdot (C \cdot 2^{2^i} - 1) \cdot (3C \cdot 2^{2^i} + 1) \\ &= (C^2 \cdot 2^{2^{i+1}} - 2C \cdot 2^{2^i} + 1)(3C^2 \cdot 2^{2^{i+1}} - 2C \cdot 2^{2^i} - 1) \\ &\equiv (-2C \cdot 2^{2^i} + 1)(-2C \cdot 2^{2^i} - 1) \equiv -1 \pmod{2^{2^{i+1}}} \end{aligned}$$

To get a polynomial-time transformation T with the desired property, let $\psi_0 = \alpha$, $\psi_{i+1} = 4\psi_i^3 + 3\psi_i^4$, and $\beta = \psi_{\lceil \log(l+1) \rceil}$.