Computational Complexity

CPSC 468/568, Fall 2012
Time: Tu \& Th, 2:30-3:45 pm
Room: AKW 0000
Satisfies the $Q R$ requirement.
http://zoo.cs.yale.edu/classes/cs468/

Partial Topic Outline

- Complexity classes (P, NP, L, NL, etc.)
- Reductions and completeness
- The roles of, e.g.,
- Randomness
- Interaction
- Approximation
? Communication complexity

Requirements (undergrads)

- Modest reading assignments, mostly in Arora and Barak, Computational Complexity: A Modern Approach, Cambridge Univ. Press.
- 6 Written HW Assignments, each worth 10% of the course grade
- 2 In-Class Exams, each worth 20% of the course grade
- No final exam during exam week

Requirements (grad students)

- Modest reading assignments, mostly in Arora and Barak, Computational Complexity: A Modern Approach.
- 6 Written HW Assignments, each worth 9% of the course grade
- Lecture-note help, worth 6% of the course grade
- 2 In-Class Exams, each worth 20% of the course grade
- No final exam during exam week

Tentative Schedule

Sept. 18: First HW Assignment Due Sept. 27: Second HW Assignment Due Oct. 9: Third HW Assignment Due
Oct. 11: First In-Class Exam
Oct. 19: Fall Semester Drop Date Nov. 1: Fourth HW Assignment Due Nov. 15: Fifth HW Assignment Due Dec. 4: Sixth HW Assignment Due Dec. 6: Second In-Class Exam

Rules and Guidelines

- Deadlines are firm.
- Late penalty: 5\% per day for at most 7 days, after which solutions are posted and HWs not yet turned in receive a grade of zero.
- Announcements and assignments will be posted on the class webpage (as well as conveyed in class).
$>$ No "collaboration" on homeworks unless you are told otherwise.
- Pick up your graded homeworks and exams promptly, and tell the TA promptly if one is missing.

Instructor: Joan Feigenbaum
Office: AKW 512
Office Hours: Thursdays 10:30 am - 12:30 pm and by appointment
Phone: 203-432-6432
Assistant: Judi Paige
(judi.paige@yale.edu, 203-436-1267, AKW 507a, 8:30 am - 4:30 pm M-F)

Note: Do not send email to Professor Feigenbaum, who suffers from RSI.
Contact her through Ms. Paige or the TA.

TA: Aaron Segal Office: AKW 503
Email: Aaron.Segal@yale.edu
Office Hours:
Tues and Thurs, 4-5 pm
and by appointment

If you're undecided ...

Check out:

- zoo.cs.yale.edu/classes/cs468/fall10/
- www.cs.princeton.edu/theory/complexity/
(draft of textbook by Sanjeev Arora and Boaz Barak of Princeton)
- www.cs.berkeley.edu/~luca/cs278-02/
(a complexity-theory course taught by Luca Trevisan at Berkeley in 2002)
- www.cs.Ith.se/home/Rolf_Karlsson/bk/retro.pdf ("NP-Completeness: A Retrospective," by Christos Papadimitriou, 1997 International Colloquium on Automata, Languages, and Programming)

Questions?

Introduction to Complexity Classes

Computational Complexity Themes

- "Easy" vs. "Hard"
- Reductions (Equivalence)
- Provability
- Randomness

Poly-Time Solvable

- Nontrivial Example : Matching

Poly-Time Solvable

- Nontrivial Example : Matching

Poly-Time Verifiable

- Trivial Example : Hamiltonian Cycle

Poly-Time Verifiable

- Trivial Ex. : Hamiltonian Cycle

- Is it Easier to Verify a Proof than to Find one?
- Fundamental Conjecture of Computational Complexity:

$$
P \neq N P
$$

Distinctions

- Matching:

- HC:

Fundamentally Different

Reduction of B to A

- If A is "Easy," then B is, too.

Algorithm

- NP-completeness
- P-time reduction
- Cook's theorem

If $B \in N P$, then
$B \leq_{p-\text { time }} S A T$

- HC is NP-complete

Equivalence

- NP-complete problems are an equivalence Class under polynomial-time reductions.
- 10k's problems
- Diverse fields

Math, CS, Engineering,
Economics, Physical Sci.,
Geography, Politics...

Random poly-time Solvable

$$
x \in L ?
$$

$x \in\{0,1\}^{n}$
$r \in\{0,1\}^{\text {poly }(n)}$

Probabilistic Classes

$$
\begin{aligned}
& \operatorname{RP}\left\{\begin{array}{l}
x \in L \rightarrow \text { "yes" w.p. } \frac{3}{4} \\
x \notin L \rightarrow \text { "no" w.p. } 1
\end{array}\right. \\
& \text { CoRP }\left\{\begin{array}{l}
x \in L \rightarrow \text { "yes" w.p. } 1 \\
x \in L \rightarrow \text { "no" w.p. } \frac{3}{4} \\
x \notin L
\end{array}\right. \\
& \text { (Outdated) Nontrivial Result }
\end{aligned}
$$

$$
\begin{gathered}
\text { Two-sided Error } \\
\operatorname{BPP} \begin{cases}x \in L \rightarrow \text { "yes" } & \text { w.p. } \frac{3}{4} \\
x \notin L \rightarrow \text { "no" } & \text { w.p. } \frac{3}{4}\end{cases}
\end{gathered}
$$

Question to Audience: BPP set not known to be in RP or coRP?

Note: QR is in NP and coNP but not known to be in RP or coRP.

Interactive Provability

$L \in I P$

$\cdot x \in L \rightarrow \exists P$: "yes" w.p. $\frac{3}{4}$
$\cdot x \notin L \rightarrow \forall P^{*}$: "no" w.p. $\frac{3}{4}$
Nontrivial Result
Interactively Provable
\downarrow
Poly-Space Solvable

