The Goldwasser-Sipser Lower-Bound Protocol

This material was presented in class on March 5, 2015.
The Goldwasser-Sipser lower-bound protocol uses a pairwise-independent hash-function family $\mathcal{H}_{n, k}$. Pairwise-independent hash-function families were defined in class on March 3, and examples were given.

Suppose that S is a subset of $\{0,1\}^{n}$ in which membership can be certified (in the NP sense). Both Arthur and Merlin know an integer K. Merlin's goal is to convince Arthur that $|S| \geq K$. We give a protocol with the property that, if $|S| \geq K$, i.e., if Merlin is making a correct claim, then Arthur accepts with high probability, and, if $|S| \leq \frac{K}{2}$, i.e., if Merlin is making a claim that is not just incorrect but far from correct, then Arthur rejects with high probability. There is no requirement on what Arthur will do if $\frac{K}{2}<|S|<K$. Let $\mathcal{H}_{n, k}$ be a pairwise-independent hash-function family, where $2^{k-2}<K \leq 2^{k-1}$.

$L B P(S, K)$

A: Choose $h \in_{R} \mathcal{H}_{n, k}$ and $y \in_{R}\{0,1\}^{k}$.
$\mathrm{A} \rightarrow \mathrm{M}:(h, y)$
M: Find $x \in S$ such that $h(x)=y$.
M \rightarrow A: (x, c), where c is a certificate of $x \in S$
A: Accept if and only if $h(x)=y$ and c is valid.
Let $p^{*}=\frac{K}{2^{k}}$ and $p=\frac{|S|}{2^{k}}$. Assume that $|S| \leq 2^{k-1}$. Note that $K \leq 2^{k-1}$ and that Merlin is trying to convince Arthur that $|S| \geq K$; so, if $|S|>2^{k-1}$, Merlin can just choose a subset T of S such that $|T| \leq 2^{k-1}$ and convince Arthur that $|T| \geq K$, which implies that $|S| \geq K$; so we lose nothing by assuming that $|S| \leq 2^{k-1}$. We claim that

$$
\begin{equation*}
\left.p \geq \operatorname{Prob}_{h, y}(\exists x \in S: h(x)=y)\right) \geq \frac{3 p}{4} . \tag{1}
\end{equation*}
$$

To see that the upper bound of p in (1) is correct, observe that $|h(S)| \leq|S|$, for any function h. The probability that y chosen uniformly at random from $\{0,1\}^{k}$ is in $h(S)$ is just $\frac{|h(S)|}{2^{k}} \leq \frac{|S|}{2^{k}}=p$.

We can actually prove the lower bound of $\frac{3 p}{4}$ in (1) for any y, not just a random y. Let x be an element of S and E_{x} be the event that $h(x)=y$ for an h chosen uniformly at random from $\mathcal{H}_{n, k}$. Note that the definition of pairwise-independent hash-function families give us $\operatorname{Prob}\left[E_{x}\right]=2^{-k}$. In (1), we have

$$
\begin{equation*}
\operatorname{Prob}_{h}(\exists x \in S: h(x)=y)=\operatorname{Prob}_{h}\left(\bigvee_{x \in S} E_{x}\right) \tag{2}
\end{equation*}
$$

By the inclusion-exclusion principle (2) is at least

$$
\begin{equation*}
\left(\sum_{x \in S} \operatorname{Prob}\left(E_{x}\right)\right)-\frac{1}{2}\left(\sum_{x \neq x^{\prime} \in S} \operatorname{Prob}\left(E_{x} \wedge E_{x^{\prime}}\right)\right) \tag{3}
\end{equation*}
$$

and the definition of pairwise-independent hash-function families tells us that $\operatorname{Prob}\left(E_{x} \wedge\right.$ $\left.E_{x^{\prime}}\right)=2^{-2 k}$. So (3) is at least

$$
\begin{aligned}
& \frac{|S|}{2^{k}}-\frac{|S|(|S|-1)}{2 \cdot 2^{2 k}} \\
& >\frac{|S|}{2^{k}}-\frac{|S|^{2}}{2^{2 k+1}} \\
& =\frac{|S|}{2^{k}}\left(1-\frac{|S|}{2^{k+1}}\right) \\
& \geq p\left(1-\frac{2^{k-1}}{2^{k+1}}\right)=\frac{3 p}{4} .
\end{aligned}
$$

We can now state precisely what LBP does in the two cases we're interested in: If $|S| \geq K$, then the probability that Arthur accepts in a single execution of LBP is at least

$$
\frac{3 p}{4}=\frac{3}{4} \cdot \frac{|S|}{2^{k}} \geq \frac{3}{4} \cdot \frac{K}{2^{k}}=\frac{3}{4} p^{*} .
$$

On the other hand, if $|S| \leq \frac{K}{2}$, then the probability that Arthur accepts in a single execution of LBP is at most

$$
p=\frac{|S|}{2^{k}} \leq \frac{1}{2} \cdot \frac{K}{2^{k}}=\frac{1}{2} p^{*} .
$$

To achieve the high-probability result that we want, we just amplify this gap of $\frac{1}{4} p^{*}$ in the acceptance probabilities of the two cases by running M independent trials of LBP. If Merlin is making a true claim, the expected number of accepts is at least $\frac{3 M}{4} p^{*}$, and, if he is making a far from true claim, the expected number is at most $\frac{M}{2} p^{*}$; moreover, M can be chosen so that the probability of fewer than $\frac{M}{2} p^{*}$ accepts in the first case or more than $\frac{3 M}{4} p^{*}$ in the second is negligible.

