An Interactive Proof System for TQBF

This material was presented in class on March 26, 2015.
We wish to revise the interactive proof system for coSAT that was given in class on March 24, 2015, so that it works for TQBF. The existence of such a proof system implies that PSPACE is contained in IP.

We follow the argument on pages 161 and 162 of your textbook. That argument is clear until it gets to the last displayed formula on page 161. Because the displayed expression should be the fully arithmetized and linearized version of the TQBF instance ψ, it should be

$$
\begin{equation*}
\Pi_{X_{1}} L_{1} \Sigma_{X_{2}} L_{1} L_{2} \cdots \Sigma_{X_{n}} L_{1} L_{2} \cdots L_{n} P_{\phi}\left(X_{1}, X_{2}, \ldots X_{n}\right) \tag{1}
\end{equation*}
$$

Here and throughout this lecture, the products and sums are computed over $X_{i} \in\{0,1\}$, where 0 and 1 are elements of the field \mathbb{Z}_{p}, and p is a suitably large prime. (The size of p will be addressed below.) Assume without loss of generality that ϕ is a 3CNF formula on n boolean variables with m clauses.

The proof system for TQBF needs $i+1$ segments of interaction, say $(i .1)$ through $(i . i+1)$, between Arthur and Merlin in order to handle X_{i}, for $1 \leq i \leq n$, and each segment requires $O(1)$ rounds. So the entire execution requires $O\left(n^{2}\right)$ rounds of interaction. For X_{i}, the first segment handles the operator $\Pi_{X_{i}}$, if i is odd, and it handles the operator $\Sigma_{X_{i}}$, if i is even. Subsequent segments of interaction for X_{i} handle the operators L_{1} through L_{i}.

Merlin's original claim is that the formula ψ is true, which is equivalent to

$$
\begin{equation*}
\Pi_{X_{1}} L_{1} \Sigma_{X_{2}} L_{1} L_{2} \cdots \Sigma_{X_{n}} L_{1} L_{2} \cdots L_{n} P_{\phi}\left(X_{1}, X_{2}, \ldots X_{n}\right) \equiv C \bmod p, \tag{1.1}
\end{equation*}
$$

where $C \neq 0$.
We now specify the first few segments of the proof system in detail:
Segment 1.1:
Note that Merlin's claim (congruence (1.1) above) is equivalent to the claim that $\Pi_{X_{1}}\left(h_{1}^{1}\left(X_{1}\right)\right) \equiv C \bmod p$, where h_{1}^{1} is the linear, univariate polynomial in X_{1} that results from evaluating all of the operators in congruence (1.1) except $\Pi_{X_{1}}$.
Arthur challenges Merlin to send him $h_{1}^{1}\left(X_{1}\right)$. Merlin sends him a linear, univariate polynomial $s_{1}^{1}\left(X_{1}\right)$. As in the sum-check protocol used in the proof system for coSAT, s_{1}^{1} will be equal to h_{1}^{1} if and only if Merlin is making a correct claim.
Arthur checks that $s_{1}^{1}(0) \cdot s_{1}^{1}(1) \equiv C \bmod p$; he rejects and halts the protocol if this check fails. Otherwise, he chooses a_{1}^{1} uniformly at random from \mathbb{Z}_{p} and sends it to Merlin.
Segment 1.2:
Merlin's claim is that

$$
\begin{equation*}
L_{1} \Sigma_{X_{2}} L_{1} L_{2} \cdots \Sigma_{X_{n}} L_{1} L_{2} \cdots L_{n} P_{\phi}\left(a_{1}^{1}, X_{2}, \ldots X_{n}\right) \equiv s_{1}^{1}\left(a_{1}^{1}\right) \bmod p \tag{1.2}
\end{equation*}
$$

This is equivalent to the claim that $L_{1}\left(h_{1}^{2}\left(a_{1}^{1}\right)\right) \equiv s_{1}^{1}\left(a_{1}^{1}\right) \bmod p$, where $h_{1}^{2}\left(X_{1}\right)$ is the quadratic, ${ }^{1}$ univariate polynomial in X_{1} that results from evaluating all of the operators in congruence (1.2) except the leftmost L_{1}.

[^0]Arthur challenges Merlin to send him $h_{1}^{2}\left(X_{1}\right)$. Merlin sends him a quadratic, univariate polynomial $s_{1}^{2}\left(X_{1}\right)$. It will be equal to h_{1}^{2} if and only if Merlin is making a correct claim.
Arthur checks that $\left(1-a_{1}^{1}\right) \cdot s_{1}^{2}(0)+a_{1}^{1} \cdot s_{1}^{2}(1) \equiv s_{1}^{1}\left(a_{1}^{1}\right) \bmod p$; he rejects and halts the protocol if this check fails. Otherwise, he chooses a_{1}^{2} uniformly at random from \mathbb{Z}_{p} and sends it to Merlin.
Segment 2.1:
Merlin's claim is that

$$
\begin{equation*}
\Sigma_{X_{2}} L_{1} L_{2} \cdots \Sigma_{X_{n}} L_{1} L_{2} \cdots L_{n} P_{\phi}\left(a_{1}^{2}, X_{2}, \ldots X_{n}\right) \equiv s_{1}^{2}\left(a_{1}^{2}\right) \bmod p \tag{2.1}
\end{equation*}
$$

This is equivalent to the claim that $\Sigma_{X_{2}}\left(h_{2}^{1}\left(X_{2}\right)\right) \equiv s_{1}^{2}\left(a_{1}^{2}\right) \bmod p$, where h_{2}^{1} is the linear, univariate polynomial in X_{2} that results from evaluating all of the operators in congruence (2.1) except Σ_{2}.

Arthur challenges Merlin to send him h_{2}^{1}. Merlin sends him a linear, univariate polynomial s_{2}^{1} in X_{2}. It will be equal to h_{2}^{1} if and only if Merlin is making a correct claim.
Arthur checks that $s_{2}^{1}(0)+s_{2}^{1}(1) \equiv s_{1}^{2}\left(a_{1}^{2}\right) \bmod p$; he rejects and halts the protocol if this check fails. Otherwise, he chooses a_{2}^{1} uniformly at random from \mathbb{Z}_{p} and sends it to Merlin.
Segment 2.2:
Merlin's claim is that

$$
\begin{equation*}
L_{1} L_{2} \cdots \Sigma_{X_{n}} L_{1} L_{2} \cdots L_{n} P_{\phi}\left(a_{1}^{2}, a_{2}^{1}, \ldots X_{n}\right) \equiv s_{2}^{1}\left(a_{2}^{1}\right) \bmod p . \tag{2.2}
\end{equation*}
$$

This is equivalent to the claim that $L_{1}\left(h_{2}^{2}\left(a_{1}^{2}\right)\right) \equiv s_{2}^{1}\left(a_{2}^{1}\right) \bmod p$, where h_{2}^{2} is the quadratic, univariate polynomial in X_{1} that results from evaluating all of the operators in congruence (2.2) except the leftmost L_{1}.

Arthur challenges Merlin to send him h_{2}^{2}. Merlin sends him s_{2}^{2}. It will be equal to h_{2}^{2} if and only if Merlin is making a correct claim.
Arthur checks that $\left(1-a_{1}^{2}\right) \cdot s_{2}^{2}(0)+a_{1}^{2} \cdot s_{2}^{2}(1) \equiv s_{2}^{1}\left(a_{2}^{1}\right) \bmod p$; he rejects and halts the protocol if this check fails. Otherwise, he chooses a_{1}^{3} uniformly at random from \mathbb{Z}_{p} and sends it to Merlin.
Segment 2.3:
Merlin's claim is that

$$
\begin{equation*}
L_{2} \cdots \Sigma_{X_{n}} L_{1} L_{2} \cdots L_{n} P_{\phi}\left(a_{1}^{3}, a_{2}^{1}, \ldots X_{n}\right) \equiv s_{2}^{2}\left(a_{1}^{3}\right) \bmod p . \tag{2.3}
\end{equation*}
$$

This is equivalent to the claim that $L_{2}\left(h_{2}^{3}\left(a_{2}^{1}\right)\right) \equiv s_{2}^{2}\left(a_{1}^{3}\right) \bmod p$, where h_{2}^{3} is the quadratic, univariate polynomial in X_{2} that results from evaluating all of the operators in congruence (2.3) except the leftmost L_{2}.

Arthur challenges Merlin to send $\operatorname{him} h_{2}^{3}$. Merlin sends him s_{2}^{3}. It will be equal to h_{2}^{3} if and only if Merlin is making a correct claim.
Arthur checks that $\left(1-a_{2}^{1}\right) \cdot s_{2}^{3}(0)+a_{2}^{1} \cdot s_{2}^{3}(1) \equiv s_{2}^{2}\left(a_{1}^{3}\right) \bmod p$; he rejects and halts the protocol if this check fails. Otherwise, he chooses a_{2}^{2} uniformly at random from \mathbb{Z}_{p} and sends it to Merlin.

Segment 3.1:
Merlin's claim is that

$$
\begin{equation*}
\Pi_{X_{3}} L_{1} L_{2} L_{3} \cdots \Sigma_{X_{n}} L_{1} L_{2} \cdots L_{n} P_{\phi}\left(a_{1}^{3}, a_{2}^{2}, \ldots X_{n}\right) \equiv s_{2}^{3}\left(a_{2}^{2}\right) \bmod p \tag{3.1}
\end{equation*}
$$

... and so forth.
Left as exercises for you are the specifications of segments (i, j), for $3 \leq i \leq n$ and $i \leq j \leq n$, and the inductive proof of the correctness of the upper bound on the error probability (given on page 162 of your textbook) in the case that Merlin is making a false claim.

In the case of a segment $i . j$ in which the operator being handled is L_{j-1}, why might the polynomial h_{i}^{j} be quadratic? Reading the sequence of operators in the congruence (i.j) from right to left, consider what has happened as all operators except the leftmost L_{j-1} have been evaluated. After the previous L_{j-1} was evaluated (at which point the partial result was a multivariate polynomial that was linear in X_{j-1}), an arithmetic operator was applied. If that was a product operator, then it produced a multivariate polynomial that is quadratic in X_{j-1}. This degree doubling does not occur if the intervening arithmetic operator is a sum. However, it is more convenient to have a uniform specification for the protocol segments, and we can do so if we make the worst-case assumption that h_{i}^{j} is quadratic. A linear polynomial is in fact just a quadratic polynomial with leading coefficient 0 , and applying the linearization operator to a polynomial that is already linear just leaves it unchanged.

It remains to explain why it suffices to use a prime p that is singly exponential in n and m (i.e., a p that can be represented using a number of bits that is polynomial in n and m). If we use the arithmetization from the interactive proof system for \#SAT in Section 8.3.2 (not the arithmetization of Lecture 16 that we used in an interactive proof system for coSAT), then (1), evaluated over \mathbb{Z}, is equal to 0 if ψ is false and 1 if ψ is true. Therefore, wraparound is not an issue, and (1) has the correct value modulo p for any p. Because the error probability is 0 in the case that Merlin is making a correct claim and $\frac{p o l y(n, m)}{p}$ in the case that Merlin is lying, we can use a p that is singly exponential in n and m.

[^0]: ${ }^{1}$ The question of why (and, in fact, whether) h_{1}^{2} is quadratic is addressed below.

