Boolean Circuits and the Karp-Lipton Theorem

This material was presented in class on February 17, 2015.
Before presenting the proof of the Karp-Lipton Theorem we covered Theorem 2.18, Definitions 6.1, 6.2, and 6.5, Claim 6.8, and the UHALT problem. These items are all presented clearly in the textbook and won't be repeated here.

Karp-Lipton Theorem: If $\mathrm{NP} \subseteq \mathrm{P} /$ poly, then $\mathrm{PH}=\Sigma_{2}^{P}$.
Proof: It suffices to show that, if $\mathrm{NP} \subseteq \mathrm{P} /$ poly, then $\Pi_{2} \mathrm{SAT} \in \Sigma_{2}^{P}$. Recall that Π_{2} SAT consists of all true QBFs of the form

$$
\begin{equation*}
\forall u \in\{0,1\}^{n} \exists v \in\{0,1\}^{n} \phi(u, v)=1 \tag{1}
\end{equation*}
$$

where ϕ is a quantifier-free boolean formula.
Note that (1) is of the form $\forall u \in\{0,1\}^{n}$ [SAT]; that is, for any fixed ϕ and u, the part of (1) that begins with \exists is just $\exists v \in\{0,1\}^{n} \phi_{u}(v)=1$, where $\phi_{u}(\cdot)$ is the formula $\phi(\cdot, \cdot)$ with the first n boolean variables instantiated as in u and the last n boolean variables left free. This is, of course, a SAT instance.

Our hypothesis is that $\mathrm{SAT} \in \mathrm{P} /$ poly. So there is a polynomial p and a $p(n)$-sized circuit family $\left\{C_{n}\right\}$ such that

$$
\forall \phi, u C_{n}(\phi, u)=1 \quad \longleftrightarrow \quad \exists v \in\{0,1\}^{n} \phi_{u}(v)=1
$$

Here, " $C_{n}(\phi, u)$ " means "the circuit C_{n} evaluated on the SAT instance determined by ϕ and u."

Recall that there is a polynomial-sized circuit family $\left\{C_{n}^{\prime}\right\}$ that reduces the search problem for SAT to the decision problem for SAT. Given an oracle that decides SAT, a circuit C_{n}^{\prime} can produce an assignment that satisfies a formula, provided such an assignment exists. Whenever C_{n}^{\prime} needs to make an oracle call on a k-variable formula and feed the answer to a gate g, it can instead feed that formula to C_{k} and feed the output to g. There will be a polynomial number $q(n)$ of such calls, the sizes $k_{1}, \ldots, k_{q(n)}$ are all polynomial in n, and the circuits $C_{k_{i}}$ are of size polynomial in k_{i}. Therefore, under the hypothesis that $\mathrm{SAT} \in \mathrm{P} /$ poly, we can "compose" these circuit families $\left\{C_{n}\right\}$ and $\left\{C_{n}^{\prime}\right\}$ to get a polynomial-sized circuit family $\left\{D_{n}\right\}$ that, given a SAT instance as input, produces a satisfying assignment if one exists. (We need the hypothesis to assert the existence of $\left\{C_{n}\right\}$ but not to assert the existence of $\left\{C_{n}^{\prime}\right\}$.) Let $w(n)$ be the (polynomial) number of bits needed to encode D_{n}. Denote by $D_{n}(\phi, u)$ the output of D_{n} on the formula ϕ_{u} determined by ϕ and u.

Now consider the following Σ_{2}^{p} expression:

$$
\begin{equation*}
\exists D_{n} \in\{0,1\}^{w(n)} \forall u \in\{0,1\}^{n} \phi_{u}\left(D_{n}(\phi, u)\right)=1 . \tag{2}
\end{equation*}
$$

We have just argued that, if (1) is true and $\mathrm{NP} \subseteq \mathrm{P} /$ poly, then (2) is true. On the other hand, if (1) is false, then (2) is also false, regardless of whether NP $\subseteq \mathrm{P} /$ poly. Thus, under the assumption that $\mathrm{NP} \subseteq \mathrm{P} /$ poly, the $\Pi_{2} \mathrm{SAT}$ formula (1) is equivalent to the \sum_{2}^{p} expression (2).

