
Notes for CPSC 468/568: Computational Complexity

ZPP, Interactive Proofs and Arthur-Merlin games, and pairwise-independent hash functions

March 3, 2015

1 ZPP

We’ve already looked at BPP (bounded-error probabilistic polynomial time) – it has two-sided error; it allows
an algorithm for language L to output 0 when x ∈ L and vice-versa with some small probability (we use
≤ 1/3, but it can be any value less than 1/2).

There’s also RP, or randomized polynomial time, which has one-sided error. That is, x ∈ L→ Pr[M(x) =
1] ≥ 2/3, but x 6∈ L→ Pr[M(x) = 0] = 1, where M runs in polynomial time. The full class is called RTIME
(so ∪c>0RTIME(nc) = RP). RP basically always runs in polynomial time in the input size, always returns
NO if the correct answer is NO, and returns YES with some probability (we use ≥ 2/3), and sometimes
(incorrectly; ≤ 1/3) NO if the correct answer is YES. coRP has error in the opposite direction.

Note that P ⊆ RP ⊆ NP (similarly, P ⊆ coRP ⊆ coNP), and that RP ⊆ BPP (similarly, coRP ⊆
BPP), but we don’t know if BPP ⊆ NP . It is not known whether these inclusions are strict. If P = BPP
is true (which we probably believe), then RP, coRP, and P collapse. If we believe that P 6= NP , this then
implies that RP is strictly contained in NP. We don’t know whether RP = coRP, or whether RP is a subset
of the intersection of NP and coNP (again, this would be implied by P = BPP).

Now that we’ve refreshed our memories on BPP and RP, let’s talk about ZPP. ZTIME(T (n)) contains
all languages L for which ∃M that runs in expected time O(T (n)), and when it halts on input x, the output
is L(x). This is a Las Vegas algorithm (remember quicksort – you “gamble” with the resources, not with the
output). Basically, it always returns the correct YES or NO answer and the running time is polynomial in
expectation for every input. We can also define it as the class of languages for which we have a probabilistic
machine M that always runs in polynomial time and returns an answer YES, NO or LLAMA (DO NOT
KNOW). The answer is always either LLAMA with probability at most 1/2 or the correct answer.

ZPP = RP ∩ coRP – this is often taken to be the definition of ZPP. To show this, first note that every
problem which is in both RP and coRP has a Las Vegas algorithm as follows: Suppose we have a language
L recognized by both the RP algorithm A and the (possibly completely different) coRP algorithm B. Given
an input in L, run A on the input for one step. If it returns YES, the answer must be YES. Otherwise,
run B on the input for one step. If it returns NO, the answer must be NO. If neither occurs, repeat this
step. Note that only one machine can ever give a wrong answer, and the chance of that machine giving the
wrong answer during each repetition is at most 50%. This means that the chance of reaching the kth round
shrinks exponentially in k, so that the expected running time is polynomial. This shows that RP ∩ coRP is
contained in ZPP. The proper proof is also very easy; we might give it to you for a HW assignment.

Other things: We don’t know of any complete problems for BPP (end of page 137).

2 Interactive Proofs

What do we want from a “proof”? We want to be convinced if it is true, we want to be able to find fault
with it if it is false, and, as I have written repeatedly in your homeworks, we want it to be short. A natural
way to think of proofs is to have a prover P and a verifier V (they each have one obvious job). Now, it turns

1

out that thinking of problems in this way can lead to some very interesting results as long as the verifier is
randomized. E.g., proving that a formula is not satisfiable is in coNP (in fact, it is coNP-complete), and so
we don’t think we have a traditional polynomial size proof for it. However, if we allow interaction, we can
do so – not just for this problem, but for any problem in PSPACE.

This has very direct real-world uses – a common problem in cryptography is user-identification. A user
wants to prove that it has a password without revealing said password to the server (the user may use the
same password elsewhere, etc.). We want the server to essentially interrogate the user to convince itself that
the user does indeed possess the correct password, and there are very interesting ways to do this. If fact, we
have zero-knowledge proofs, which reveal nothing except for this one fact. Note that interaction means that
P and V pass messages back and forth, ending with a message from P to V (there’s no utility to having a
final V to P message).

Recall the basic NP scenario – we’re simply adding interaction to it. We need to ask ourselves whether
we want to make P and V deterministic or probabilistic. If both are deterministic, things get pretty boring.
For example, to verify membership in 3SAT, V asks P to announce the values of the literals in each clause,
keeping track of the values to ensure that P doesn’t produce contradictory values. The textbook provides
some definitions about deterministic provers and verifiers; you should skim those.

Let’s formalize the statement that we want to be convinced if a proof is true, we want to be able to find
fault with it if it is false, and we want it to be short (and this is just NP): if x ∈ L→ ∃P : outV 〈V, P 〉(x) = 1,
otherwise 0 (completeness: if x ∈ L, there is a proof that P can provide such that V accepts; soundness:
ifx 6∈ L, V always rejects the proof). What I really want to talk about is the computational power of P.
We’re going to let P be unbounded (the same way we treat adversaries in cryptography) – this makes sense
because a false assertion should not be provable under any scenario. Since P is unbounded, determinism is
a moot point (and we can see why a deterministic V would be even more boring than before).

Now, let’s actually come to IP. We use a probabilistic V, i.e. V’s questions will be based on some random
coin-flips, and V is allowed to be wrong with some small probability. Why is this such a big deal? It turns out
that this makes us jump from NP to PSPACE. The usual example used to illustrate this is as follows: Arthur,
who is color blind, is getting ready for his coronation, when Merlin tells him that his socks don’t match.
Arthur is not entirely convinced; he’s just met Bilbo and knows that wizards can be rather manipulative.
To convince himself, he comes up with the following protocol (Arthur was a talented computer scientist):
Merlin gives him the two (otherwise identical) socks, telling him, say, that the left one is red, and the other
green and then turns around. Arthur tosses a coin, and switches the socks if it lands on tails. Arthur then
asks Merlin to turn back and guess whether the socks have been switched. If Merlin can guess correctly on
n repetitions, then Arthur will be convinced.

Let us now define this formally: For an integer k ≥ 1 (that may depend upon the input length – ok, since
P is unbounded), we say that a language L is in IP [k] if ∃ a probabilistic polynomial time TM V that can have
a k-round interaction with a function (think oracle!) P : {0, 1}∗ → {0, 1}∗ such that we have completeness
(x ∈ L → ∃P : Pr[outV 〈P, V 〉(x) = 1] ≥ 2/3) and soundness (x 6∈ L → ∀P : Pr[outV 〈P, V 〉(x) = 1] ≤ 1/3).
We define IP = ∪c≥1IP [nc]. All probabilities are over r, the coin-flips carried out by V. Note that if P were
a PPT, we’d end up with BPP.

Example: Graph Non-isomorphism
This was what we thinly-disguised earlier as a color-blind Arthur with socks. Recall that two

graphs are isomorphic if they are the identical up to a relabeling of the vertices. GI ∈ NP (you can
think why) – in fact, it is one of the most famous problems in NP. We do not know whether it is
NP-complete (it turns out that if we could show that this is NP-complete, the PH would collapse).
Here, we tackle the GNI problem – whether or not two graphs are non-isomorphic (you should think
about where GNI fits).

We take two graphs G0, G1 and pick i ∈ {0, 1} u.a.r. We then randomly permute the vertices of
Gi to produce a new graph H, which we send to P. P now has to guess which of the two graphs H
is a permutation of – it is unbounded, so it can simply check all permutations if need be. P sends
its guess j. We accept if i = j. If G0, G1 are isomorphic (the same color) then P cannot distinguish

2

between them. So, if i = j always, then the graphs are not isomorphic; otherwise, P can do (at best)
1/2.

We can check to make sure that this fits the definition of IP. Note that if G1 is not isomorphic to
G2, ∃P : Pr[V accepts] = 1; If not, P can do at best 1/2, which we can reduce to 1/3 by repetition.

It turns out that this definition is extremely robust. The idea was independently developed in the mid-
1980s by Goldwasser, Micali, and Rackoff (who called it “interactive proofs”), and Babai and Moran (who
called it “Arthur-Merlin Games”). Arthur is basically V, except for the fact that the coin tosses are public;
Arthur goes first in AM games, and Merlin in MA games. You can think of AM [k] as IP where the messages
sent by A/V contain the transcripts of its coin tosses. Intuitively, we can see that having the coin tosses
be public heavily restricts or reduces the kinds of computation we can do. Fortunately, this intuition is
completely wrong – public/private coins are equivalent (the protocol might run for longer, but that’s about
it – Theorem 8.12; basically, Merlin can show Arthur that there are a large number of random strings on
which to accept, reducing AM to IP). We can also restrict the number of rounds, have Arthur accept with
Pr=1 (one-sided error), etc. GNI is actually in AM[2] (see Theorem 8.13).

We can also prove that IP ⊆ PSPACE by seeing that P can maximize the probability of acceptance by
V by computing recursively on all possible questions V can ask in each round (computing by induction on
future rounds – remember, P is unbounded) in PSPACE (this is exercise 8.1).

3 Pairwise-independent Hash Functions

Recall the definition of pairwise independent random variables: If S is a finite set, and X1, . . . , Xn are
random variables assuming values in S, then X1, . . . , Xn are pairwise independent if for all i 6= j and
a, b ∈ S, Pr[Xi = a ∧Xj = b] = Pr[Xi = a]× Pr[Xj = b] = 1/|S|2.

Similarly, if we have two different but fixed strings x and x′ of length n, we can choose a function h at
random from Hn,k, and end up with 〈h(x), h(x′)〉 which is uniformly distributed over {0, 1}k × {0, 1}k.

More formally, let Hn,k be a set of functions that map {0, 1}n to {0, 1}k. We say that Hn,k is a pairwise-
independent hash-function family if, for all x 6= x′ in {0, 1}n and all y and y′ in {0, 1}k,

Probh∈RHn,k
(h(x) = y and h(x′) = y′) =

1

22k
.

Equivalently, for any pair of distinct elements x and x′ in {0, 1}n, if an element h is chosen uniformly at
random from Hn,k, the induced random variable (h(x), h(x′)) is uniformly distributed on {0, 1}k × {0, 1}k.

Obviously, the set of all functions from {0, 1}n to {0, 1}k is a pairwise-independent hash-function family.
In order to be useful, however, elements of Hn,k should have polynomial-length representations (so that one
can choose one uniformly at random by flipping a polynomial number of coins) and should be computable
in polynomial time. We now specify one such family. There are others with these two desirable properties.

Recall that elements of the finite field GF(2n) can be represented by n-bit strings. It is easy to see that
the set of all ha,b, where a and b are both elements of GF(2n) and ha,b(z) = az+ b, is a pairwise-independent
hash-function family Hn,n. First, note that, as a and b range over all of GF(2n), the function ha,b ranges
over all affine functions that map GF(2n) to GF(2n), of which there are 22n. Choosing a and b independently
and uniformly at random is tantamount to choosing such an affine function uniformly at random. On the
other hand, each quadruple x, x′, y, y′ of elements of GF(2n) such that x 6= x′ uniquely determines an affine

function h such that h(x) = y and h(x′) = y′. (Just let h(z) = (y′−y
x′−x)z + (y − (y′−y

x′−x)x).) For a given
x, x′, y, y′ such that x 6= x′, the probability that an ha,b chosen uniformly at random is equal to this h is
exactly 2−2n, which is what we need for Hn,n to be a pairwise-independent hash-function family.

If k > n, we can get Hn,k by using Hk,k and padding the input strings with n − k zeroes. If k < n, we
can get Hn,k by using Hn,n and chopping off the last n− k output bits.

3

