
Lecture 2: Introduction to Turing Machines

SAT = the set of satisfiable CNF propositional formulae. We start with a
formula e and clauses C1, C2, . . . , Cm; x1, . . . , xn are Boolean variables. That
is, e = C1 ∧ C2 ∧ · · · ∧ Cm and Ci = xi,1 ∨ xi,2 ∨ · · · ∨ xi,j(i)

k-SAT: Same as SAT, except j(i) ≤ k, i ≤ j ≤ n (that is, each clause has at
most k Boolean variables)
k-SAT ≤P (k-1)-SAT for k ≥ 4 (not k = 3)

Turing Machines: See pages 3 and 4.

Facts and definitions about Turing machines and complexity classes:
A non-deterministic TM has same the definition as a deterministic TM,

but has multiple (some constant number of) δs. At each step, the TM can
use any one of these transition functions. In at most T (n) steps, the machine
halts (n = |x|, where x is the input). A non-deterministic TM is not “ran-
dom” – think of it as a tree. Each node represents a choice; each path from
root to leaf represents a possible computation.

A TM M “recognizes” language L in T (n) if M runs in time T (n) and
∀x ∈ L, M(x) outputs 1, otherwise 0.

T : N → N is a time-constructible function if T (n) ≥ n and there is a
TM M that computes the result from an input x in time T . That is, there
exists a machine that counts how many steps are taken on an input.

Optional exercise: Write a Turing machine for a counter.

Some important things to remember:

1. If some binary function is computable in time T , and T is time con-
structible, andM has alphabet Γ, then f is computable in time 4 log |Γ|T
by a TM that uses the alphabet {B,�, 0, 1}.

2. If you have a language that you can recognize in time T with k work
tapes, then you can also recognize it in time 5kT 2 with one work tape.

3. If you can recognize a language in time T with a bidirectional machine,
then you can do the same using a unidirectional machine in time 4T
(note: should be 2T).

4. Since the definition of a Turing machine is finite (it’s a program, and a
program is finite), we can encode its definition in binary. There exists
a universal Turing machine U (see theorem 1.9). For every x and α in
{0, 1}∗, U(x, α) = Mα(x) – the universal TM is running the machine

1

encoded by α on input x. Moreover, if Mα halts in T steps on input x,
then U halts in CT log T on input (x, α). Note that C is independent
of the length of x; it depends on Mα (size of tape alphabet, etc.)

f : N → N is a space constructible function if it is non-decreasing and
there exists a Turing machine that on input 1n outputs the binary represen-
tation of f(n) using O(f(n)) space. Note that if f is space constructible,
then there exists a Turing machine that on input 1n marks off exactly f(n)
cells on its work tapes (say, using a special symbol) without ever exceeding
O(f(n)) space.

The statement “M recognizes language L in DTIME(T)” = “there exists
a TM M that recognizes L in time O(T).” Why do we use O? We don?t
want to allow different machine architectures to change the meaning of our
running time statement.

P =
⋃
c∈NDTIME(nc)

L ∈ NP means that ∃ a poly-timeM (called the verifier) and a poly q such
that for every x ∈ {0, 1}∗, x ∈ L if there is another string w (w ∈ {0, 1}q(|x|))
and M(x,w) = 1. We call this w a witness for the membership of x in L.

This is different from solving the problem – we are simply verifying a
solution, not finding one. For example, let the input be a formula that
belongs to SAT; w is an assignment that satisfies it – w is thus relatively
short.

L ≤P L′: Many-to-one poly-time reducibility (Karp reducibility)
If there exists a poly-time computable function f such that x ∈ L ⇔

f(x) ∈ L′, we say that L is NP complete if L ∈ NP , ∀S ∈ NP , S is many-
to-one poly-time reducible to L.

2

3

Turing-Machine model of Computation
Deterministic k-tape Turing machine M .

· · ·· · · �k · · · · · ·

· · ·· · · �3 · · · · · ·

· · ·· · · �2 · · · · · ·

· · ·· · · �1 · · · · · ·

q

�

6

?

?

?

· · ·

...

There is one read-only input tape (on top) and k � 1 read-write work/output tapes.

M is a triple �, Q, � that is defined as follows:

• � is the tape alphabet, a finite set of symbols. Assume 2 (”blank” symbol), .

(”start” symbol), 0 and 1 are four distinct elements of �.

• Q is the state set, a finite set of states that M ’s control register can be in. Assume

qstart and qhalt are two distinct states in Q.

• � is the transition function, a finite table that describes the rules (or program)

by which M operates:

� : Q⇥ �k ! Q⇥ �k�1 ⇥ (L, S, R)k.

4

�(q, (�1, ..., �k)) = (q0, (�0
2, ..., �

0
k), (z1, ..., zk)) means that, if M is in state q, and the

read (or read/write) tape heads are pointing at the cells containing �1, ..., �k, then

the following ”step” of the computation is performed:

– the read/write tape symbols �2, ..., �k are replaced by �0
2, ..., �

0
k;

– tape head i moves left, stays in place or moves right, depending on whether zi

is in L,S or R;

– the control-register state is changed to q0.

When M starts its execution on input x = �1, ..., �n, we have

• q = qstart

• input tape

· · ·. �1 �2 · · · �n 2 2 · · ·

• all other tapes

· · ·. 2 2 2 2 2 2 · · ·

Meaning of qhalt:

�(qhalt, (�1, ..., �k)) = (qhalt, (�2, ..., �k), S
k) 8(�1, ..., �k).

Designate one of the read/write tapes as ”the output tape”.

Turing machine M ”computes the function f”, if for all x 2 �⇤ the execution of M on

input x eventually reaches the state qhalt, and when it does, the contents of M ’s output

tape is f(x).

M ”runs in time T” if for all n and all x 2 �n M halts after at most T (n) steps.

