Lecture 2: Introduction to Turing Machines

SAT = the set of satisfiable CNF propositional formulae. We start with a
formula e and clauses Cy,Cs,...,C,,; z1,...,x, are Boolean variables. That
iS, 6201/\02/\/\Cm and Cl :mi,lvxiﬁ\/"'vxi,j(i)

k-SAT: Same as SAT, except j(i) < k, i < j < n (that is, each clause has at
most k Boolean variables)
k-SAT <p (k-1)-SAT for k > 4 (not k = 3)

Turing Machines: See pages 3 and 4.

Facts and definitions about Turing machines and complexity classes:

A non-deterministic TM has same the definition as a deterministic TM,
but has multiple (some constant number of) ds. At each step, the TM can
use any one of these transition functions. In at most 7'(n) steps, the machine
halts (n = |z|, where z is the input). A non-deterministic TM is not “ran-
dom” — think of it as a tree. Each node represents a choice; each path from
root to leaf represents a possible computation.

A TM M “recognizes” language L in T'(n) if M runs in time T'(n) and
Vo € L, M(x) outputs 1, otherwise 0.

T : N — N is a time-constructible function if 7'(n) > n and there is a
TM M that computes the result from an input x in time 7. That is, there
exists a machine that counts how many steps are taken on an input.

Optional ezxercise: Write a Turing machine for a counter.

Some important things to remember:

1. If some binary function is computable in time 7', and T is time con-
structible, and M has alphabet I, then f is computable in time 4 log |['|T’
by a TM that uses the alphabet {>,[J,0,1}.

2. If you have a language that you can recognize in time 7" with k£ work
tapes, then you can also recognize it in time 5572 with one work tape.

3. If you can recognize a language in time 7" with a bidirectional machine,

then you can do the same using a unidirectional machine in time 47
(note: should be 27).

4. Since the definition of a Turing machine is finite (it’s a program, and a
program is finite), we can encode its definition in binary. There exists
a universal Turing machine U (see theorem 1.9). For every = and « in
{0,1}*, U(z,a) = M,(x) — the universal TM is running the machine

1

encoded by « on input x. Moreover, if M, halts in T steps on input =z,
then U halts in CT logT on input (x,«). Note that C' is independent
of the length of z; it depends on M, (size of tape alphabet, etc.)

f N — N is a space constructible function if it is non-decreasing and
there exists a Turing machine that on input 1™ outputs the binary represen-
tation of f(n) using O(f(n)) space. Note that if f is space constructible,
then there exists a Turing machine that on input 1" marks off exactly f(n)
cells on its work tapes (say, using a special symbol) without ever exceeding
O(f(n)) space.

The statement “M recognizes language L in DTIME(T)” = “there exists
a TM M that recognizes L in time O(7).” Why do we use O7 We don?t
want to allow different machine architectures to change the meaning of our
running time statement.

P =,oy DTIME(n®)

L € NP means that 3 a poly-time M (called the verifier) and a poly ¢ such
that for every o € {0,1}*, € L if there is another string w (w € {0, 1}2(=)
and M (z,w) = 1. We call this w a witness for the membership of x in L.

This is different from solving the problem — we are simply verifying a
solution, not finding one. For example, let the input be a formula that
belongs to SAT; w is an assignment that satisfies it — w is thus relatively
short.

L <p L': Many-to-one poly-time reducibility (Karp reducibility)

If there exists a poly-time computable function f such that z € L <
f(x) € L', we say that L is NP complete if L € NP, VS € NP, S is many-
to-one poly-time reducible to L.

Turing-Machine model of Computation

Deterministic k-tape Turing machine M.

01

02

03

Ok

There is one read-only input tape (on top) and k — 1 read-write work/output tapes.
M is a triple I',), 0 that is defined as follows:

e [' is the tape alphabet, a finite set of symbols. Assume O (”blank” symbol), >
("start” symbol), 0 and 1 are four distinct elements of I'.

e () is the state set, a finite set of states that M’s control register can be in. Assume
Gstart AN a1 are two distinct states in Q.

e) is the transition function, a finite table that describes the rules (or program)
by which M operates:

§:QxTF - QxT* ! x (L, S, R)"

3(q, (o1, .eyor)) = (¢, (0%, ..., 0%), (21, ..., 2k)) means that, if M is in state ¢, and the
read (or read/write) tape heads are pointing at the cells containing oy, ..., 0%, then
the following "step” of the computation is performed:

— the read/write tape symbols oy, ..., 0y are replaced by o), ..., o};

— tape head ¢ moves left, stays in place or moves right, depending on whether z;
isin L,S or R;

— the control-register state is changed to ¢'.
When M starts its execution on input x = o, ..., 0, we have

® J = (start

e input tape

e all other tapes

Meaning of gua:
6(qhalt7 (0-17 seey O-k‘)) - (Qhalt; (0-27 seey 0-16)7 Sk) v<0-17 seey Uk)

Designate one of the read/write tapes as ”the output tape”.

Turing machine M ”computes the function f”, if for all x € I'* the execution of M on
input z eventually reaches the state quai;, and when it does, the contents of M’s output

tape is f(x).

M ”"runs in time T” if for all n and all € I M halts after at most 7'(n) steps.

