Lecture 2: Introduction to Turing Machines

SAT $=$ the set of satisfiable CNF propositional formulae. We start with a formula e and clauses $C_{1}, C_{2}, \ldots, C_{m} ; x_{1}, \ldots, x_{n}$ are Boolean variables. That is, $e=C_{1} \wedge C 2 \wedge \cdots \wedge C_{m}$ and $C_{i}=x_{i, 1} \vee x_{i, 2} \vee \cdots \vee x_{i, j(i)}$
k -SAT: Same as SAT, except $j(i) \leq k, i \leq j \leq n$ (that is, each clause has at most k Boolean variables) k -SAT $\leq_{P}(\mathrm{k}-1)$-SAT for $k \geq 4($ not $k=3)$

Turing Machines: See pages 3 and 4 .
Facts and definitions about Turing machines and complexity classes:
A non-deterministic TM has same the definition as a deterministic TM, but has multiple (some constant number of) δ s. At each step, the TM can use any one of these transition functions. In at most $T(n)$ steps, the machine halts ($n=|x|$, where x is the input). A non-deterministic TM is not "random" - think of it as a tree. Each node represents a choice; each path from root to leaf represents a possible computation.

A TM M "recognizes" language L in $T(n)$ if M runs in time $T(n)$ and $\forall x \in L, M(x)$ outputs 1 , otherwise 0 .
$T: \mathbb{N} \rightarrow \mathbb{N}$ is a time-constructible function if $T(n) \geq n$ and there is a TM M that computes the result from an input x in time T. That is, there exists a machine that counts how many steps are taken on an input.
Optional exercise: Write a Turing machine for a counter.
Some important things to remember:

1. If some binary function is computable in time T, and T is time constructible, and M has alphabet Γ, then f is computable in time $4 \log |\Gamma| T$ by a TM that uses the alphabet $\{\triangleright, \square, 0,1\}$.
2. If you have a language that you can recognize in time T with k work tapes, then you can also recognize it in time $5 k T^{2}$ with one work tape.
3. If you can recognize a language in time T with a bidirectional machine, then you can do the same using a unidirectional machine in time $4 T$ (note: should be $2 T$).
4. Since the definition of a Turing machine is finite (it's a program, and a program is finite), we can encode its definition in binary. There exists a universal Turing machine U (see theorem 1.9). For every x and α in $\{0,1\}^{*}, U(x, \alpha)=M_{\alpha}(x)$ - the universal TM is running the machine
encoded by α on input x. Moreover, if M_{α} halts in T steps on input x, then U halts in $C T \log T$ on input (x, α). Note that C is independent of the length of x; it depends on M_{α} (size of tape alphabet, etc.)
$f: \mathbb{N} \rightarrow \mathbb{N}$ is a space constructible function if it is non-decreasing and there exists a Turing machine that on input 1^{n} outputs the binary representation of $f(n)$ using $O(f(n))$ space. Note that if f is space constructible, then there exists a Turing machine that on input 1^{n} marks off exactly $f(n)$ cells on its work tapes (say, using a special symbol) without ever exceeding $O(f(n))$ space.

The statement "M recognizes language L in $\operatorname{DTIME}(\mathrm{T})$ " = "there exists a TM M that recognizes L in time $O(T)$." Why do we use O ? We don?t want to allow different machine architectures to change the meaning of our running time statement.
$P=\bigcup_{c \in \mathbb{N}} \operatorname{DTIME}\left(n^{c}\right)$
$L \in N P$ means that \exists a poly-time M (called the verifier) and a poly q such that for every $x \in\{0,1\}^{*}, x \in L$ if there is another string $w\left(w \in\{0,1\}^{q(|x|)}\right)$ and $M(x, w)=1$. We call this w a witness for the membership of x in L.

This is different from solving the problem - we are simply verifying a solution, not finding one. For example, let the input be a formula that belongs to SAT; w is an assignment that satisfies it $-w$ is thus relatively short.
$L \leq_{P} L^{\prime}:$ Many-to-one poly-time reducibility (Karp reducibility)
If there exists a poly-time computable function f such that $x \in L \Leftrightarrow$ $f(x) \in L^{\prime}$, we say that L is NP complete if $L \in N P, \forall S \in N P, \mathrm{~S}$ is many-to-one poly-time reducible to L .

Turing-Machine model of Computation

Deterministic k-tape Turing machine M.

There is one read-only input tape (on top) and $k-1$ read-write work/output tapes. M is a triple Γ, Q, δ that is defined as follows:

- Γ is the tape alphabet, a finite set of symbols. Assume("blank" symbol), \triangleright ("start" symbol), 0 and 1 are four distinct elements of Γ.
- Q is the state set, a finite set of states that M 's control register can be in. Assume $q_{\text {start }}$ and $q_{\text {halt }}$ are two distinct states in Q.
- δ is the transition function, a finite table that describes the rules (or program) by which M operates:

$$
\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k-1} \times(L, S, R)^{k} .
$$

$\delta\left(q,\left(\sigma_{1}, \ldots, \sigma_{k}\right)\right)=\left(q^{\prime},\left(\sigma_{2}^{\prime}, \ldots, \sigma_{k}^{\prime}\right),\left(z_{1}, \ldots, z_{k}\right)\right)$ means that, if M is in state q, and the read (or read/write) tape heads are pointing at the cells containing $\sigma_{1}, \ldots, \sigma_{k}$, then the following "step" of the computation is performed:

- the read/write tape symbols $\sigma_{2}, \ldots, \sigma_{k}$ are replaced by $\sigma_{2}^{\prime}, \ldots, \sigma_{k}^{\prime}$;
- tape head i moves left, stays in place or moves right, depending on whether z_{i} is in L, S or R;
- the control-register state is changed to q^{\prime}.

When M starts its execution on input $x=\sigma_{1}, \ldots, \sigma_{n}$, we have

- $q=q_{\text {start }}$
- input tape

- all other tapes

Meaning of $q_{\text {halt }}$:

$$
\delta\left(q_{\text {halt }},\left(\sigma_{1}, \ldots, \sigma_{k}\right)\right)=\left(q_{\text {halt }},\left(\sigma_{2}, \ldots, \sigma_{k}\right), S^{k}\right) \quad \forall\left(\sigma_{1}, \ldots, \sigma_{k}\right) .
$$

Designate one of the read/write tapes as "the output tape".

Turing machine M "computes the function $f^{\prime \prime}$, if for all $x \in \Gamma^{*}$ the execution of M on input x eventually reaches the state $q_{\text {halt }}$, and when it does, the contents of M 's output tape is $f(x)$.

M "runs in time T " if for all n and all $x \in \Gamma^{n} \mathrm{M}$ halts after at most $T(n)$ steps.

