
Lecture 4, January 22, 2015

Throughout, points that were not covered in detail in class and that you are encouraged
to think through and justify are marked by “(WHY?).”

If a set S ⊆ {0, 1}∗ is recognized by a TM M , i.e., S = L(M), then we say that S is
decidable or computable. One fundamental fact about the TM model is that there are sets
that are not decidable. We first construct such a set, denoted UC, using a technique called
diagonalization and then use the undecidability of UC to prove the undecidability of the
halting problem.

Recall that every x ∈ {0, 1}∗ encodes a TM, which we denote by Mx. Moreover, every
TM is encoded by infinitely many binary strings. To see this, suppose that s encodes M and
then consider all strings of the form sδσ, where δ is a binary string the semantics of which
are “end of TM specification,” and σ is an arbitrary string in {0, 1}∗; there are infinitely
many strings of this form, and they all encode M . Of course, many strings will encode TMs
that are not well formed, and we follow the convention that an ill-formed TM recognizes the
empty set. Let xMy be a binary string that encodes M .

The set UC is defined as follows: If Mx(x) = 1, i.e., if Mx halts on input x and outputs
1, then x 6∈ UC. Otherwise, i.e., if Mx does not half on input x or if it halts and outputs
something other than 1, then x ∈ UC.

Proposition 1 UC is undecidable.

Proof. Suppose that UC were the set accepted by M . By definition, M(xMy) = 1 if and
only if xMy 6∈ UC, which is clearly a contradiction.

Figure 1.7 of your textbook, a copy of which is attached at the end of these notes, shows
why this proof technique is called “diagonalization.” In this construction, UC is defined
by “negating the diagonal set” and, in particular, is defined in a manner that precludes its
being the set recognized by any TM. In the table of Figure 1.7, the rows are labeled by
binary strings that encode TMs; remember that every TM labels infinitely many rows in the
table. Every binary string except the empty string occurs once as a row label and once as
a column label. (Observe that there is a typo in that figure in the book: The second row
should be labeled “1,” not “0.” This has been corrected in the copy attached to these notes.)
The columns of the table are strings that may or may not be in the language accepted by a
particular TM. In the (i, j)th square of the table before anything gets crossed out, there is a
1 if Mi halts on input xj and outputs 1, there is a 0 if Mi halts on input xj and outputs 0,
and there is a ∗ if Mi does not halt on input xj or if it halts and outputs something other
than 0 or 1. (Here Mi is the TM encoded by the string labeling row i, and xj is the binary
string labeling column j.)

The “cross outs” illustrate the process of going down the major diagonal of this table
to define UC. A 1 is entered next to the crossed-out symbol in the (i, i)th square (i.e., xi is
put into UC) if and only if the crossed-out symbol was a 0 or a ∗ (i.e., if and only if Mi

either does not halt on input xi or halts and outputs something other than 1). UC cannot
be decidable, because it cannot be the set recognized by any TM: For every i, the TM of
row i gives the wrong answer to the question “is xi in UC?”

1

Those of you who have seen the proof that the reals are uncountable will have noticed
by now that it is essentially the same as the proof that UC is undecidable.

It could be argued that the undecidability of UC is not particularly interesting, because
membership in UC is not a naturally occurring computational problem. That argument does
not apply to the halting problem. Let HALT be the set of pairs (α, x), where α and x are in
{0, 1}∗, such that Mx halts on input α. Membership in HALT is clearly a natural problem
in the context of computer programming.

Proposition 2 HALT is undecidable.

Proof. We reduce UC to HALT. Note that this reduction need not be polynomial-time or
many-to-one. (WHY?)

Suppose that HALT were recognized by Turing Machine M . Here is a specification for
a machine that recognizes UC and uses M as a subroutine. We wish to decide whether x is
in UC. If M(x, x) = 0, then output 1. Otherwise, let b = M(x, x). If b = 1, then output 0;
else, output 1.

In fact, diagonalization can be used to prove some basic facts about computational com-
plexity, not just decidability. Unfortunately, there is no concise definition of the term “diag-
onalization” that is suitable for this course. However, Section 3.4 of your textbook gives the
following characterization that will suffice for our purposes: We will use the term to describe
any technique that relies solely upon the following properties of TMs:

I The existence of an effective representation of TMs by strings

II The ability of one TM to simulate any other without much overhead in running time

An example of an “effective representation” is the one given in Figure 1.7. An example
of a simulation that does not require much overhead in running time is the one given in the
proof of Theorem 1.9. Diagonalization can be used to prove the

Time-Hierarchy Theorem: If f and g are time-constructible functions satisfying
f(n) log f(n) = o(g(n)), then DTIME(f) (DTIME(g).

The following weaker version of this theorem is sufficient for purposes of this class. In
the proof, U refers to the universal TM of Theorem 1.9.

Theorem 3 For any positive integer d, DTIME(nd) (DTIME(nd+1).

Proof. Consider D, a TM that proceeds as follows: On input x, D simulates U(x, x) for
|x|d+0.4 steps. If U halts within this number of steps and outputs a bit b, then output 1− b.
Else, output 0.

Note that, on any input x, D halts within |x|d+0.4 ≤ |x|d+1 steps and outputs 0 or 1.
Thus L(D) is well defined and in DTIME(nd+1). We must show that it is not in DTIME(nd).

Assume, by way of contradiction, that there is a TM M and a constant c such that, for
all x ∈ {0, 1}, M halts within c|x|d steps on input x and outputs D(x).

2

U can simulate M on input x in c′ · c · |x|d log |x| steps, where c′ is a constant that is
independent of |x|. (WHY?) There is an integer n0 such that nd+0.4 > c′ · c · nd log n for
every n ≥ n0. Let x be a string that encodes M such that |x| ≥ n0. Recall that such an x
must exist, because M is encoded by infinitely many strings. Then D, on input x = xMy,
will compute an output bit within |x|d+0.4 steps, but, by definition of D, that output bit will
be 1−M(x). Therefore, L(M) 6= L(D).

For nondeterministic computation, we have an even denser time hierarchy.

Nondeterministic Time-Hierarchy Theorem: If f and g are time-constructible and
f(n+ 1) = o(g(n)), then NTIME(f(n)) (NTIME(g(n)).

Note that these hierarchy theorems do not tell us anything about whether P is equal to
NP. (WHY?)

In fact, we will not be able to resolve the P vs. NP problem with diagonalization, which
is the technique used to prove the hierarchy theorems. This is the take-home message of the
Baker-Gill-Solovay Theorem, which will be presented in class on Tues, Jan 27, 2015.

We ended this lecture by stating the following curious fact:

Gap Theorem: There is a function f : N −→ N such that DTIME(f(n)) = DTIME(2f(n)).

Note that the Gap Theorem does not contradict the Deterministic Time-Hierarchy The-
orm. (WHY?).

3

