
CPSC 468/568: Lecture 6 (January 29, 2015)

This lecture began with Def. 4.1 in your textbook (space-bounded computation, both
deterministic and nondeterministic), the notion of “configuration graphs” (as defined in the
text immediately preceding Claim 4.4 in your book), and the fact that

DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n))),

which is Theorem 4.2 in your book.
The first two inequalities of Theorem 4.2 are trivial, and the third is easy to prove. Let

W be a nondeterministic TM that runs in space S(n); we seek a deterministic algorithm
that runs in time 2O(S(n)), on input x ∈ {0, 1}n, and decides whether x ∈ L(W).

As explained in class, each configuration of W can be encoded in c ·S(n) bits, where the
constant c depends on the alphabet size, number of states, and number of writable tapes in
W . (Recall that the contents of the input tape are not included in the configuration. So this
is true even if S(n) = o(n), as long as S(n) ≥ log n.) Thus, the configuration graph GW,x

has at most 2c·S(n) nodes. Moreover, the out-degree of any node in this (directed) graph is
two, because we can assume without loss of generality that W has exactly two transition
functions δ0 and δ1.

Therefore, in DTIME2O(S(n)), we can explicitly construct GW,x (using 2(O(S(n))) space as
well as time) and use a linear-time DFS or BFS algorithm to determine whether it contains
a path from its START configuration CW,x

START to its ACCEPT configuration CW,x
ACCEPT. The

input x is in L(W) if and only if the graph contains such a path.

We concluded this lecture with a fundamental fact about the relationship of nondeter-
ministic space-bounded computation and deterministic space-bounded computation.

Savitch’s Theorem: If S is a space-constructible function, and S(n) ≥ log n, then
NSPACE(S(n)) ⊆ SPACE((S(n))2).

Proof. Let L be a language recognized in spaceO(S(n)) by nondeterministic Turing Machine
W , and let x ∈ {0, 1}n be an input that may or may not be in L. Consider the configuration
graph GW,x. We will define a deterministic machine that, on input x, decides whether there

is a path from CW,x
START to CW,x

ACCEPT, where these are the unique START and ACCEPT nodes
in V (GW,x). Recall that, if there is a path from CW,x

START to CW,x
ACCEPT, there is one of length

O(2c·S(n)), for some positive constant c, i.e., that |V (GW,x)| = O(2c·S(n)).
The deterministic algorithm that we provide actually solves the more general decision

problem REACH(u, v, i), which is 1 if there exists a path from u to v in GW,x of length at
most 2i and 0 if there is no such path. The algorithm is defined recursively.

For i = 0 (the base case of the recursion), the algorithm simply checks whether v is one
of the two configurations that can be reached from u in one step, i.e., in one application of
one of the transition functions δ0 and δ1 that define W . (Think about why that can be done
in space O(S(n)).)

For i > 0, we ask whether there is a configuration z such that REACH(u, z, i − 1) and
REACH(z, v, i− 1) are both 1. The two crucial points are:

◦ We can cycle through all (exponentially many) candidates for z and, having concluded
that a particular zj did not have the requisite property, reuse the space we just used
for zj to do the computation for zj+1.

◦ For a particular z, we can compute REACH(u, z, i − 1) and then reuse the space to
compute REACH(z, v, i− 1).

Let SM,i be the space required to compute REACH(u, v, i) on a configuration graph GW,x

with M nodes. To decide whether there is exists a path from u to v, we would use space at
most SM,logM . We have the recurrence relation

SM,i = SM,i−1 +O(logM),

because space SM,i−1 is needed for recursive calls, and space O(logM) is needed to write
down the “midpoint configuration” z. Solving this recurrence relation gives us SM,logM =
O((logM)2). For nondeterministic machine W , we have M = O(2c·S(n)), and thus SM,logM =
O((S(n))2).

Note that Savitch’s Theorem implies that PSPACE = NPSPACE.

2

