CPSC 468/568: Lecture 6 (January 29, 2015)

This lecture began with Def. 4.1 in your textbook (space-bounded computation, both
deterministic and nondeterministic), the notion of “configuration graphs” (as defined in the
text immediately preceding Claim 4.4 in your book), and the fact that

DTIME(S(n)) € SPACE(S(n)) € NSPACE(S(n)) € DTIME(2065™)),

which is Theorem 4.2 in your book.

The first two inequalities of Theorem 4.2 are trivial, and the third is easy to prove. Let
W be a nondeterministic TM that runs in space S(n); we seek a deterministic algorithm
that runs in time 295" on input = € {0,1}", and decides whether x € L(W).

As explained in class, each configuration of W can be encoded in ¢- S(n) bits, where the
constant ¢ depends on the alphabet size, number of states, and number of writable tapes in
W. (Recall that the contents of the input tape are not included in the configuration. So this
is true even if S(n) = o(n), as long as S(n) > logn.) Thus, the configuration graph Gy,
has at most 2¢°(™ nodes. Moreover, the out-degree of any node in this (directed) graph is
two, because we can assume without loss of generality that W has exactly two transition
functions g and 9;.

Therefore, in DTIME2°G™)  we can explicitly construct Gy, (using 2¢ ) space as
well as time) and use a linear-time DFS or BFS algorithm to determine whether it contains
a path from its START configuration Cypagy to its ACCEPT configuration Cycegpr. The
input x is in L(W) if and only if the graph contains such a path.

O(5(n))

We concluded this lecture with a fundamental fact about the relationship of nondeter-
ministic space-bounded computation and deterministic space-bounded computation.

Savitch’s Theorem: If S is a space-constructible function, and S(n) > logn, then
NSPACE(S(n)) € SPACE((S(n))?).

Proof. Let L be a language recognized in space O(S(n)) by nondeterministic Turing Machine
W, and let = € {0,1}" be an input that may or may not be in L. Consider the configuration
graph Gy,. We will define a deterministic machine that, on input x, decides whether there
is a path from C’gyf’ﬁRT to C’X%%EPT, where these are the unique START and ACCEPT nodes
in V(Gw.). Recall that, if there is a path from Cggagr to Cagegpr, there is one of length
O(2°9M), for some positive constant ¢, i.e., that |V (G, )| = O(2¢5™).

The deterministic algorithm that we provide actually solves the more general decision
problem REACH (u,v,), which is 1 if there exists a path from u to v in Gy, of length at
most 2¢ and 0 if there is no such path. The algorithm is defined recursively.

For i = 0 (the base case of the recursion), the algorithm simply checks whether v is one
of the two configurations that can be reached from u in one step, i.e., in one application of
one of the transition functions dy and é; that define W. (Think about why that can be done
in space O(S(n)).)

For i > 0, we ask whether there is a configuration z such that REACH(u, z,7 — 1) and
REACH(z,v,i — 1) are both 1. The two crucial points are:



o We can cycle through all (exponentially many) candidates for z and, having concluded
that a particular z; did not have the requisite property, reuse the space we just used
for z; to do the computation for z;;.

o For a particular z, we can compute REACH(u, 2,7 — 1) and then reuse the space to
compute REACH(z,v,i — 1).

Let S, be the space required to compute REACH(u, v, 4) on a configuration graph Gy,
with M nodes. To decide whether there is exists a path from u to v, we would use space at
most Sarogvr- We have the recurrence relation

SMJ' = SM,z’—l + O(log M),

because space Syr;—1 is needed for recursive calls, and space O(log M) is needed to write
down the “midpoint configuration” z. Solving this recurrence relation gives us Sasiog s =

O((log M)?). For nondeterministic machine W, we have M = O(2¢%™) and thus Sy og »1 =
O((S(n))?). n

Note that Savitch’s Theorem implies that PSPACE = NPSPACE.



