## CPSC 468/568: Lecture 6 (January 29, 2015)

This lecture began with Def. 4.1 in your textbook (space-bounded computation, both deterministic and nondeterministic), the notion of "configuration graphs" (as defined in the text immediately preceding Claim 4.4 in your book), and the fact that

$$
\operatorname{DTIME}(S(n)) \subseteq \operatorname{SPACE}(S(n)) \subseteq \operatorname{NSPACE}(S(n)) \subseteq \operatorname{DTIME}\left(2^{O(S(n))}\right)
$$

which is Theorem 4.2 in your book.
The first two inequalities of Theorem 4.2 are trivial, and the third is easy to prove. Let $W$ be a nondeterministic TM that runs in space $S(n)$; we seek a deterministic algorithm that runs in time $2^{O(S(n))}$, on input $x \in\{0,1\}^{n}$, and decides whether $x \in L(W)$.

As explained in class, each configuration of $W$ can be encoded in $c \cdot S(n)$ bits, where the constant $c$ depends on the alphabet size, number of states, and number of writable tapes in $W$. (Recall that the contents of the input tape are not included in the configuration. So this is true even if $S(n)=o(n)$, as long as $S(n) \geq \log n$.) Thus, the configuration graph $G_{W, x}$ has at most $2^{c \cdot S(n)}$ nodes. Moreover, the out-degree of any node in this (directed) graph is two, because we can assume without loss of generality that $W$ has exactly two transition functions $\delta_{0}$ and $\delta_{1}$.

Therefore, in DTIME2 $2^{O(S(n))}$, we can explicitly construct $G_{W, x}$ (using $2^{(O(S(n)))}$ space as well as time) and use a linear-time DFS or BFS algorithm to determine whether it contains a path from its START configuration $C_{\text {START }}^{W, x}$ to its ACCEPT configuration $C_{\text {ACCEPT }}^{W, x}$. The input $x$ is in $L(W)$ if and only if the graph contains such a path.

We concluded this lecture with a fundamental fact about the relationship of nondeterministic space-bounded computation and deterministic space-bounded computation.

Savitch's Theorem: If $S$ is a space-constructible function, and $S(n) \geq \log n$, then NSPACE $(S(n)) \subseteq \operatorname{SPACE}\left((S(n))^{2}\right)$.
Proof. Let $L$ be a language recognized in space $O(S(n))$ by nondeterministic Turing Machine $W$, and let $x \in\{0,1\}^{n}$ be an input that may or may not be in $L$. Consider the configuration graph $G_{W, x}$. We will define a deterministic machine that, on input $x$, decides whether there is a path from $C_{\mathrm{START}}^{W, x}$ to $C_{\mathrm{ACCEPT}}^{W, x}$, where these are the unique START and ACCEPT nodes in $V\left(G_{W, x}\right)$. Recall that, if there is a path from $C_{\text {START }}^{W, x}$ to $C_{\text {ACCEPT }}^{W, x}$, there is one of length $O\left(2^{c \cdot S(n)}\right)$, for some positive constant $c$, i.e., that $\left|V\left(G_{W, x}\right)\right|=O\left(2^{c \cdot S(n)}\right)$.

The deterministic algorithm that we provide actually solves the more general decision problem $\operatorname{REACH}(u, v, i)$, which is 1 if there exists a path from $u$ to $v$ in $G_{W, x}$ of length at most $2^{i}$ and 0 if there is no such path. The algorithm is defined recursively.

For $i=0$ (the base case of the recursion), the algorithm simply checks whether $v$ is one of the two configurations that can be reached from $u$ in one step, i.e., in one application of one of the transition functions $\delta_{0}$ and $\delta_{1}$ that define $W$. (Think about why that can be done in space $O(S(n))$.)

For $i>0$, we ask whether there is a configuration $z$ such that $\operatorname{REACH}(u, z, i-1)$ and $\operatorname{REACH}(z, v, i-1)$ are both 1. The two crucial points are:

- We can cycle through all (exponentially many) candidates for $z$ and, having concluded that a particular $z_{j}$ did not have the requisite property, reuse the space we just used for $z_{j}$ to do the computation for $z_{j+1}$.
- For a particular $z$, we can compute $\operatorname{REACH}(u, z, i-1)$ and then reuse the space to compute $\operatorname{REACH}(z, v, i-1)$.

Let $\mathcal{S}_{M, i}$ be the space required to compute $\operatorname{REACH}(u, v, i)$ on a configuration graph $G_{W, x}$ with $M$ nodes. To decide whether there is exists a path from $u$ to $v$, we would use space at most $\mathcal{S}_{M, \log M}$. We have the recurrence relation

$$
\mathcal{S}_{M, i}=\mathcal{S}_{M, i-1}+O(\log M),
$$

because space $\mathcal{S}_{M, i-1}$ is needed for recursive calls, and space $O(\log M)$ is needed to write down the "midpoint configuration" $z$. Solving this recurrence relation gives us $\mathcal{S}_{M, \log M}=$ $O\left((\log M)^{2}\right)$. For nondeterministic machine $W$, we have $M=O\left(2^{c \cdot S(n)}\right)$, and thus $\mathcal{S}_{M, \log M}=$ $O\left((S(n))^{2}\right)$.

Note that Savitch's Theorem implies that PSPACE $=$ NPSPACE .

