Probabilistic Reduction from PH to ©P

This material was presented in class on April 9, 2015. We wish to prove

Arora-Barak’s Lemma 17.17: For any constants ¢ and m in N, there exists a
probabilistic polynomial-time algorithm f such that, for any > SAT instance v,

Y is true — Pr(f(y) e ®SAT]| >1-2""
Y is false — Pr[f(¢) € @SAT] <2™™

The @SAT version of the Valiant-Vazirani lemma, which was presented in Lec-
ture 20, gives us this result for ¢ = 1. We will prove by induction on ¢ that the
result holds not only for X .SAT instances but also for II.SAT instances.

From the algorithm f that reduces SAT to &SAT with correctness probability
1 — 2™ we can easily construct an algorithm f’ that reduces coSAT to @SAT
with the same correctness probability: Just let f'(¢) = f(¢) + 1, where addition of
formulas and the formula “1” are as defined in Chapter 17 (and in class on April
7). So the base case (¢ = 1 for both ¥ and II) of what we're trying to prove is
true. Our inductive hypothesis is that it is true for ¢ — 1. In particular, it holds
for instances v of II._1{SAT. We will use this to prove that it holds for instances ¢
of X.SAT. Any such ¢ is of the form

¢($17 T, ... 7']:0) = Elxlva T chc¢/($17 T, ... 71:0)7

where each of the x;’s is a string of boolean variables, and ). is 3 if ¢ is odd and V if ¢
is even. Note that ¢ is of the form Jz1¢)(z1), where ¥(z1) is an instance of TI._;SAT.
By our inductive hypothesis, for any m € N, there is a probabilistic, polynomial-
time algorithm f such that p(z,z1) = (f(¢¥(21)))(2), B(x1) = @.p(z,x1), and,
with probability at least 1 — 271 B(2,) = ¢(x1) (i.e., with probability at least
1 — 270D 3z, B(zy) if and only if Ix19p(zy)).

We now examine the proof of the (USAT version of the) Valiant-Vazirani lemma
and note that it is oblivious in the sense that it does not use the structure of the
formula ¢ when producing the formula 7(-,-). Obliviousness implies that, for any
boolean function g on a string x; of n boolean variables, the input 1" is sufficient
for the Valiant-Vazirani reduction to produce a boolean formula 7(w,y), where
lw| = n and |y| = poly(n), such that, with probably at least -, 7 has a unique
satisfying assignment. Note that, if 7 has a unique satisfying assignment, then it
is in @P. So, for any boolean function (3, we have

dz16(x1) — Prob[(®w,7(w,y)) A (B(z1) =1)] >
—3z18(z1) —> Probl(@uw,(T(w,y) A (B(z1) =1))] = 0.



In our inductive proof, B(x1) = @.p(z,x1), and p is a formula of size polynomial
in the size of our original X.SAT instance ¢. Thus, we have

1
&n
0.

dz16(x1) — Prob[(Bw,7(w,y)) A (B.p(z, 21))]
—3z18(x1) — Probl(@w,7(w,y)) A (B.p(2,21))]

v

Applying the definition of multiplication of formulas from Lecture 20, we get

dr16(x1) — Prob[@y,y (T p)(w,y, z,x1)] >
_\31’16(ZE1) — PTOb[@w,y,z(T ' p)(w,y,z,xl)] -

We can use the same procedure as we used to convert the USAT version of Valiant-
Vazirani to the @SAT version of Valiant-Vazirani in order to produce a formula «
that, with probability 1 — 27+ is in @SAT if and only if 3z, 5(x).

Finally, we compose these two reductions to transform our original instance
¢ of X .SAT to a ®SAT instance « such that, with probability at least 1 — 27™,
¢ € X.SAT if and only if @ € @SAT. The error probability is at most 27, because
an error occurs if and only if there is disagreement between ¢ = Jz19(z;) and
31 3(x1) (which occurs with probability at most 2~(™+1)) or there is disagreement
between Jz15(x1) and o € GSAT (which also occurs with probability at most
2-(m+1)) We use the same “add 1” trick as we used for SAT and coSAT to conclude
that the result holds for II,SAT if is hold for X.SAT.



