
Probabilistic Reduction from PH to ⊕P

This material was presented in class on April 9, 2015. We wish to prove

Arora-Barak’s Lemma 17.17: For any constants c and m in N , there exists a
probabilistic polynomial-time algorithm f such that, for any

∑
c SAT instance ψ,

ψ is true −→ Pr[f(ψ) ∈ ⊕SAT ] ≥ 1− 2−m

ψ is false −→ Pr[f(ψ) ∈ ⊕SAT ] ≤ 2−m

The ⊕SAT version of the Valiant-Vazirani lemma, which was presented in Lec-
ture 20, gives us this result for c = 1. We will prove by induction on c that the
result holds not only for ΣcSAT instances but also for ΠcSAT instances.

From the algorithm f that reduces SAT to ⊕SAT with correctness probability
1 − 2−m, we can easily construct an algorithm f ′ that reduces coSAT to ⊕SAT
with the same correctness probability: Just let f ′(ψ) = f(ψ)+1, where addition of
formulas and the formula “1” are as defined in Chapter 17 (and in class on April
7). So the base case (c = 1 for both Σ and Π) of what we’re trying to prove is
true. Our inductive hypothesis is that it is true for c − 1. In particular, it holds
for instances ψ of Πc−1SAT. We will use this to prove that it holds for instances φ
of ΣcSAT. Any such φ is of the form

φ(x1, x2, . . . , xc) = ∃x1∀x2 · · ·Qcxcφ
′(x1, x2, . . . , xc),

where each of the xi’s is a string of boolean variables, and Qc is ∃ if c is odd and ∀ if c
is even. Note that φ is of the form ∃x1ψ(x1), where ψ(x1) is an instance of Πc−1SAT.
By our inductive hypothesis, for any m ∈ N , there is a probabilistic, polynomial-
time algorithm f such that ρ(z, x1) = (f(ψ(x1)))(z), β(x1) = ⊕zρ(z, x1), and,
with probability at least 1− 2−(m+1), β(x1) = ψ(x1) (i.e., with probability at least
1− 2−(m+1), ∃x1β(x1) if and only if ∃x1ψ(x1)).

We now examine the proof of the (USAT version of the) Valiant-Vazirani lemma
and note that it is oblivious in the sense that it does not use the structure of the
formula φ when producing the formula τ(·, ·). Obliviousness implies that, for any
boolean function β on a string x1 of n boolean variables, the input 1n is sufficient
for the Valiant-Vazirani reduction to produce a boolean formula τ(w, y), where
|w| = n and |y| = poly(n), such that, with probably at least 1

8n
, τ has a unique

satisfying assignment. Note that, if τ has a unique satisfying assignment, then it
is in ⊕P. So, for any boolean function β, we have

∃x1β(x1) −→ Prob[(⊕w,yτ(w, y)) ∧ (β(x1) = 1)] ≥ 1

8n
¬∃x1β(x1) −→ Prob[(⊕w,y(τ(w, y) ∧ (β(x1) = 1))] = 0.
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In our inductive proof, β(x1) = ⊕zρ(z, x1), and ρ is a formula of size polynomial
in the size of our original ΣcSAT instance φ. Thus, we have

∃x1β(x1) −→ Prob[(⊕w,yτ(w, y)) ∧ (⊕zρ(z, x1))] ≥
1

8n
¬∃x1β(x1) −→ Prob[(⊕w,yτ(w, y)) ∧ (⊕zρ(z, x1))] = 0.

Applying the definition of multiplication of formulas from Lecture 20, we get

∃x1β(x1) −→ Prob[⊕w,y,z(τ · ρ)(w, y, z, x1)] ≥
1

8n
¬∃x1β(x1) −→ Prob[⊕w,y,z(τ · ρ)(w, y, z, x1)] = 0.

We can use the same procedure as we used to convert the USAT version of Valiant-
Vazirani to the ⊕SAT version of Valiant-Vazirani in order to produce a formula α
that, with probability 1− 2−(m+1), is in ⊕SAT if and only if ∃x1β(x1).

Finally, we compose these two reductions to transform our original instance
φ of ΣcSAT to a ⊕SAT instance α such that, with probability at least 1 − 2−m,
φ ∈ ΣcSAT if and only if α ∈ ⊕SAT. The error probability is at most 2−m, because
an error occurs if and only if there is disagreement between φ = ∃x1ψ(x1) and
∃x1β(x1) (which occurs with probability at most 2−(m+1)) or there is disagreement
between ∃x1β(x1) and α ∈ ⊕SAT (which also occurs with probability at most
2−(m+1)). We use the same “add 1” trick as we used for SAT and coSAT to conclude
that the result holds for ΠcSAT if is hold for ΣcSAT.
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