
Toda’s Theorem

This material was presented in class on April 14, 2014. We wish to prove

Toda’s Theorem: PH ⊆ P#SAT[1]. That is, for any language L ∈ PH, there is a
polynomial-time oracle Turing Machine that decides membership in L when given
access to a #SAT oracle; moreover, on any input x, the oracle machine makes just
one #SAT query.

We use the following lemmas from Chapter 17 of Arora-Barak.

Lemma 17.17: For any constant c ∈ N , there exists a probabilistic polynomial-
time algorithm f such that for any m and any

∑
c SAT instance ψ,

ψ is true −→ Pr[f(ψ) ∈ ⊕SAT] ≥ 1− 2−m

ψ is false −→ Pr[f(ψ) ∈ ⊕SAT] ≤ 2−m

Lemma 17.22: There is a deterministic polynomial-time transformation T that
maps CNF formulas to CNF formulas such that β = T (α, 1l) has following property:

α ∈ ⊕SAT −→ #(β) = −1 (mod 2l+1)

α 6∈ ⊕SAT −→ #(β) = 0 (mod 2l+1)

A proof of Lemma 17.17 was presented in class on April 9, 2015 and can be found
on the course website. A proof of Lemma 17.22 is presented below. We now show
how to use them to prove Toda’s Theorem.

Note first that it suffices to reduce membership in ΣcSAT to a single #SAT
query, for an arbitrary c ≥ 1, because every L in the PH is in ΣP

c for some c and
hence many-to-one reducible to ΣcSAT.

Consider the probabilistic polynomial-time algorithm f in the Lemma 17.17
with m = 2. Instead of treating f as a probabilistic algorithm, we can treat it as
a deterministic function of two arguments, namely the ΣcSAT instance ψ and the
random string r. Let R = |r|, and l = R + 1, and consider the formula,∑

r∈{0,1}R
#T (f(ψ, r), 1l) (∗)

If ψ is true, then at least 3
4

of the terms being summed in (∗) are −1 mod 2l+1,
and the rest are 0 mod 2l+1. Thus, when ψ is true, (∗) falls into the interval
[−2R,−d3

4
× 2Re] mod 2l+1.

If ψ is false, then at least 3
4

of the terms being summed in (∗) are 0 mod 2l+1,
and the rest are−1mod 2l+1. Thus, (∗) falls into the interval [−d1

4
×2Re, 0]mod 2l+1

in this case.

1

Because 2l+1 > 2R+1, the two intervals in these two cases are disjoint. Hence,
if we can show how to compute (∗) in P#SAT[1], we can decide which of the two
intervals it falls into to get the truth value of ψ.

Note that β = T (f(ψ, r), 1l) is a SAT instance. Thus, we can apply the par-
simonious Cook-Levin reduction to the nondeterministic, polynomial-time Turing
Machine that takes (ψ, r) as input and accepts if and only there exists a witness
y of length polynomial in the input size that satisfies β. Call the output of that
reduction Γ(ψ, r, y, z). (The string z represents the extra variables used in the
Cook-Levin reduction to encode the sequence of snapshots.) Let Γψ(r, y, z) denote
Γ(ψ, r, y, z) for a fixed formula ψ, and let CL denote the polynomial-time reduction
function. Then,

#Γψ(r, y, z)
= |{(r, y, z) | (y, z) satisfies CL(T (f(ψ, r), 1l))}|
= |{(r, y, z) | (y, z) satisfies CL(T (f(ψ, r), 1|r|+2))}|
=

∑
r∈{0,1}R the number of (y, z) pairs that satisfy T (f(ψ, r), 1|r|+2)

(because the reduction is parsimonious)
=

∑
r∈{0,1}R #T (f(ψ, r), 1|r|+2)

= (∗)
Thus, given ψ and r, we can first compute the value of β, apply the parsimonious

Cook-Levin reduction to it to obtain Γψ(r, y, z), then get the value of (∗) by making
one query to the #SAT oracle.

Proof of Lemma 17.22: Recall that we have defined addition and multiplication
operators on CNF formulas with the properties that #(φ+ τ) = #(φ) + #(τ) and
#(φ · τ) = #(φ) · #(τ). (See formulas 17.5 and 17.7.) Using these operators, we
can construct from any CNF formula τ a related CNF formula 4τ 3 + 3τ 4 that, for
any i ≥ 0, satisfies

#(τ) ≡ 0 (mod 22i) −→ #(4τ 3 + 3τ 4) ≡ 0 (mod 22i+1

) (∗∗)

and

#(τ) ≡ −1 (mod 22i) −→ #(4τ 3 + 3τ 4) ≡ −1 (mod 22i+1

). (∗ ∗ ∗)

To prove (**), let B = #(τ) = C · 22i . Then

#(4τ 3+3τ 4) = 4B3+3B4 = B2(4B+3B2) = C2·22i+1 ·(4B+3B2) ≡ 0 (mod 22i+1

).

2

To prove (***), let B = #(τ) = C · 22i − 1. Then

#(4τ 3 + 3τ 4) = 4B3 + 3B4

= B2 ·B · (4 + 3B)

= (C · 22i − 1)2 · (C · 22i − 1) · (3C · 22i + 1)

= (C2 · 22i+1 − 2C · 22i + 1)(3C2 · 22i+1 − 2C · 22i − 1)

≡ (−2C · 22i + 1)(−2C · 22i − 1) ≡ −1 (mod 22i+1

)

To get a polynomial-time transformation T with the desired property, let ψ0 =
α, ψi+1 = 4ψ3

i + 3ψ4
i , and β = ψdlog(l+1)e.

3

