Toda's Theorem

This material was presented in class on April 14, 2014. We wish to prove

Toda’s Theorem: PH C P#SATU . That is, for any language L € PH, there is a
polynomial-time oracle Turing Machine that decides membership in L when given

access to a #SAT oracle; moreover, on any input x, the oracle machine makes just
one #SAT query.

We use the following lemmas from Chapter 17 of Arora-Barak.

Lemma 17.17: For any constant ¢ € N, there exists a probabilistic polynomial-
time algorithm f such that for any m and any ) SAT instance 1,

Y is true — Pr{f(y) € ®SAT]|>1-2""
Y is false — Pr{f(y) € @SAT] <27™™

Lemma 17.22: There is a deterministic polynomial-time transformation 7" that
maps CNF formulas to CNF formulas such that 8 = T'(«, 1) has following property:

a € BSAT — #(B) = —1 (mod 2'*1)
a g SAT — #(B) =0 (mod 2"1)

A proof of Lemma 17.17 was presented in class on April 9, 2015 and can be found
on the course website. A proof of Lemma 17.22 is presented below. We now show
how to use them to prove Toda’s Theorem.

Note first that it suffices to reduce membership in X.SAT to a single #SAT
query, for an arbitrary ¢ > 1, because every L in the PH is in X2 for some ¢ and
hence many-to-one reducible to ¥.SAT.

Consider the probabilistic polynomial-time algorithm f in the Lemma 17.17
with m = 2. Instead of treating f as a probabilistic algorithm, we can treat it as
a deterministic function of two arguments, namely the X.SAT instance ¢) and the
random string r. Let R = |r|, and [ = R+ 1, and consider the formula,

S H#T(r), 1) (+)

re{0,1}F

If ¢ is true, then at least % of the terms being summed in (x) are —1 mod 2171,
and the rest are 0 mod 2%!. Thus, when ¢ is true, (*) falls into the interval
(28, —[2 x 2%]] mod 211

If ¢ is false, then at least % of the terms being summed in (%) are 0 mod 2"+,
and the rest are —1 mod 2. Thus, (x) falls into the interval [—[$ x 257, 0] mod 2'*!

in this case.



Because 2! > 28+ the two intervals in these two cases are disjoint. Hence,
if we can show how to compute () in P#SATI we can decide which of the two
intervals it falls into to get the truth value of .

Note that 8 = T(f(1,7),1!) is a SAT instance. Thus, we can apply the par-
simonious Cook-Levin reduction to the nondeterministic, polynomial-time Turing
Machine that takes (¢, r) as input and accepts if and only there exists a witness
y of length polynomial in the input size that satisfies 5. Call the output of that
reduction I'(¢,7,y,2). (The string z represents the extra variables used in the
Cook-Levin reduction to encode the sequence of snapshots.) Let I';(r, y, z) denote
['(v, r,y, z) for a fixed formula v, and let C'L denote the polynomial-time reduction
function. Then,

#Fw (T7 Y, Z)
= [{(r,9,2) | (,2) satisfies CL(T(f(,r), 1)}
= {(r,y,2) | (y,2) satisfies CL(T(f(y,r), 1"1+2))}|
= cionyr the number of (y,z) pairs that satisfy T(f(¢,r), 1Ir+2)

(because the reduction is parsimonious)
= Zre{o,1}R #T(f(,7), 17+2)
= (%)

Thus, given ¥ and r, we can first compute the value of 3, apply the parsimonious
Cook-Levin reduction to it to obtain I'y (7, y, z), then get the value of () by making
one query to the #SAT oracle.

Proof of Lemma 17.22: Recall that we have defined addition and multiplication
operators on CNF formulas with the properties that #(¢ + 7) = #(¢) + #(7) and
#(p- 1) = #(¢) - #(7). (See formulas 17.5 and 17.7.) Using these operators, we
can construct from any CNF formula 7 a related CNF formula 473 + 37* that, for
any ¢ > 0, satisfies

#(7) =0 (mod 2¥) — #(47> + 37 =0 (mod 2°) (xx)

#(7) = —1 (mod 2%') — #(47° +37%) = —1 (mod 2*). (% % %)
To prove (**), let B = #(7) = C'-2%'. Then

#(4r3+37Y) = 4B*+3B" = BX(4B+3B%) = C*2*7 .(4B+3B%) =0 (mod 2*7).



To prove (¥**) let B = #(7) = C'- 2% — 1. Then
#(47° + 37%) = 4B* + 3B*
= B> B-(4+3B)
=(C-2¥ =12 (C-2* —1)-(3C - 2% +1)
—(C?. 2% —20 2" + 1)(3C%- 22T —20 - 2% — 1)
= (—2C-2% +1)(—2C-2* —1) = —1 (mod 22")

To get a polynomial-time transformation 7" with the desired property, let ¢y =
o, Yiy1 = 43 + 3¢}, and B = Yioga1))-



