Fill in the holes (boldfaced "WHY"s) in the posted proof of the Baker-Gill-Solovay Theorem (notes for Lecture 5).

WHYNOT-1: Had we done so, we would still have that $P^{\text{EXP}COM} \subseteq NP^{\text{EXP}COM}$ and that $\text{EXP} \subseteq P^{\text{EXP}COM}$. However, the foregoing proof that $NP^{\text{EXP}COM} \subseteq \text{EXP}$ would not go through. We have an input x of length n for which we are trying to determine membership in $L(W^{\text{EXP}COM})$. In time $p_1(n)$, W could construct a query (M, y, t), where $t = 2^{p_1(n)}$, because writing down such a t requires simply writing down one 1 followed by $p_1(n)$ zeroes. Simulating M on input y for 2^t steps would, in this case, require time $2^{2^{p_1(n)}}$, which is doubly exponential in the length of x, not singly exponential in $|x|$ as we need it to be for this proof.

WHY-2: To determine whether 1^n is in U_B, an NP base machine can simply guess an x of length n and ask the oracle whether it is in B.

WHY-3: Although B has not been completely defined by stage i, all of the answers to queries made by M_i on input 1^n within $2^n/10$ steps have been determined. So, if M_i halts within $2^n/10$ steps, it has all of the information it needs to make a decision about 1^n.

WHY-4: Before stage i begins, no strings of length n have been put into B. So (*) cannot require the answer to a query of length n to be “YES.” During the $(2^n/10)$-step simulation in stage i, the only queries (of any length) to which answers are fixed are those fixed in (**), and all of those answers are “NO.” So no strings of length n are put into B before stage i gets to case 1.

WHY-5: Before stage i, membership in B has not been determined for any strings of length n. During the $(2^n/10)$-step simulation in stage i, membership can be fixed for at most $2^n/10$ strings, of length n or any other length, by (**). There are 2^n strings of length n; thus, membership in B has not yet been decided for at least one of them (indeed for at least 90% of them) by the time stage i gets to case 2.
WHY-6: At this point in the proof, membership has only been fixed for those q that are considered in (***) for some stage i and for (possibly not all) strings in $\{0, 1\}^n$, where n is the length used in some stage i. Clearly, this need not be all of $\{0, 1\}^\ast$. To complete the definition of B, we can just take any string whose membership has not yet been determined to be a non-member of B. Of course, there are other ways to complete the definition; the point is that a membership bit must be defined for each string.

2

Prove that there is an oracle A such that $coNP^A = NP^A$ and an oracle B such that $coNP^B \neq NP^B$.

We begin by showing that $\exists A$ such that $NP^A = coNP^A$. Take $A = TQBF$. First we show that $NP^A = P^A$. Clearly, $P^A \subseteq NP^A$ for any oracle A. For the other direction, $NP^{TQBF} \subseteq NPSPACE^{TQBF} \subseteq NPSPACE$ since we can compute instances of $TQBF$ in polynomial space instead of asking the oracle. From Savitch’s theorem, we know that $NPSPACE \subseteq PSPACE$. Finally, Theorem 4.13 shows that $TQBF$ is $PSPACE$-complete, which gives us $PSPACE \subseteq P^{TQBF}$. Hence $NP^{TQBF} = P^{TQBF}$. Similarly, $coNP^A = coP^A$. Also, trivially, $P^A = coP^A$. Summing up, we have: $NP^A = P^A = coP^A = coNP^A$.

Next, we show that $\exists B$ such that $NP^B \neq coNP^B$. For any oracle B, let L_B be the set of all strings w for which no string of equal length appears in B. That is, $L_B = \{w | \exists x \in B, |x| = |w|\}$.

For any B, it holds that $L_B \in coNP^B$. We show this by proving that $\overline{L_B} \in NP^B$. Given input w, a non-deterministic oracle M guesses a string x of length $|w|$ and checks if $x \in B$. If so, it outputs 1, else 0. If $w \in \overline{L_B}$, there exists an x of the same length, so M accepts. Similarly, if $w \notin \overline{L_B}$, then M always rejects.

We now define B so that $L_B \notin NP^B$. Let M_1, M_2, \ldots be the list of all NDTMs. We assume that M_i runs in time at most n^i. We set $B = \emptyset$. Now, at step i, let n be a number larger than any string that has been classified (we know whether it is in B or not), and $2^n > n^i$. M_i is run on input 1^n. For every oracle query y that M_i makes: if $y \in B$ can be determined, then answer appropriately, else, answer “no” and set $y \notin B$.

Now, if M_i rejects on every branch, then all strings y of length n are not in B (so $\exists x \in B$ of length n and $1^n \in L_B$). Otherwise, there must exist a branch where M_i accepts 1^n. We fix this branch and set $y \in \{0, 1\}^n$ be a string that was not queried. Then, we define $y \in B$ and remove all other
strings of length \(n \) from \(B \). (Note that setting \(y \in B \) does not change the decision on the fixed path.)

Now that we have defined \(B \), we claim that no \(\text{NP} \)-machine decides \(B \). Let \(M \) be an \(\text{NP} \)-machine. Then, \(M = M_i \) for some \(i \). Now, if \(M_i(1^n) \) is a case where all branches reject, then by the construction of \(B \), we have that \(1^n \in L_B \), so \(M_i \) does not decide \(B \). If not all branches reject, then there is at least one accepting path even where \(y \in B \) with \(|y| = n \). Thus, \(M_i \) accepts even though \(1^n \notin B \) (as we just said, \(\exists y \in B ||y| = n \)). So, \(M_i \) does not decide \(B \).

3 Problem 4.4

Show that the following language is \(\text{NL} \)-complete:

\[
\{ [G] : G \text{ is a strongly connected digraph} \}
\]

Denote this set by \(\text{SCD} \) (for “strongly connected digraph”). First, we must show that \(\text{SCD} \) is in \(\text{NL} \). Assume that \(G \) is given as an adjacency matrix and that \(V(G) = \{1, \ldots, n\} \). Recall that, on September 18, 2012, we gave the following \(\text{NL} \) procedure to recognize the set \(\text{PATH} \), \(i.e., \) the set of triples \((G, s, t)\) such that there is a path from \(s \) to \(t \) in the digraph \(G \).

\[
\text{PATH}(G, s, t)
\]

\[
\{ i \leftarrow 0; \\
 u \leftarrow s; \\
 \text{WHILE}(i \leq n) \\
 \{ \\
 \quad \text{IF } (u = t) \text{ THEN OUTPUT(ACCEPT) AND HALT;} \\
 \quad \text{GUESS } u' \in V(G); \\
 \quad \text{IF } ((u, u') \in A(G)) \text{ THEN } u \leftarrow u'; \\
 \quad i \leftarrow i + 1; \\
 \} \\
\text{OUTPUT(REJECT) AND HALT;}
\}
\]

To recognize \(\text{SCD} \), we simply run \(\text{PATH} \) on each pair of nodes in \(G \).

\[
\text{SCD}(G)
\]

\[
\{ \text{FOR } 1 \leq s \leq n \\
\}
\]
FOR 1 ≤ t ≤ n
 IF (PATH(s, t) = REJECT) THEN OUTPUT(REJECT) AND HALT;
 OUTPUT(ACCEPT) AND HALT;
}

Note that this procedure SCD is nondeterministic, because PATH is nonde-
terministic. Moreover, because PATH runs in logspace, SCD requires only
logspace, because each of s and t can be written down in O(\log n) bits, and
we can reuse the space we used for one s-t pair when we do the computation
for the next pair.

To show that every problem in NL is logspace-reducible to SCD, it suffices
to show that PATH is logspace-reducible to SCD. Let (G, s, t) be a PATH
instance, where G = (V, A). The corresponding instance f(G, s, t) of SCD is
G' = (V, A'), where A' contains all arcs in A, plus all arcs of the form (v, s),
where v ≠ s, and all arcs of the form (t, v), where v ≠ t.

First, we must show that (G, s, t) ∈ PATH if and only if G' ∈ SCD. If
(G, s, t) ∈ PATH, then there is a path s → ··· → t in G. Thus, for any v
and w in V, there is a path v → s → ··· → t → w in G'; this means that
G' ∈ SCD. On the other hand, if G' ∈ SCD, then there is a path from v to
w for any pair of nodes v and w in V, and, in particular, there is one from s
to t. But what is a path v_0 = s → v_2 → ··· → v_\ell = t in G' from s to t used
one or more arcs that were not in the original instance’s graph G. If it did,
then it would not be a simple path, i.e., it would visit s or t or both more
than once, because all of the arcs in G' that are not in G have s or t as an
endpoint. Such a path must contain a subpath v_i → ··· → v_j that starts at
v_i = s, ends at v_j = t, and has no occurrence of s or t between v_i and v_j.
That subpath is a path from s to t in the original instance.

Next, we must show that the reduction f is implicitly logspace-computable.
If x is a PATH instance that contains an n - node graph G, then |x| =
n^2 + 2 \log n + c for some constant c - n^2 bits for the adjacency matrix of G,
2 \log n for s and t, and c bits for “delimiters” between the adjacency matrix
and s and between s and t. The length of SCD instance f(x) is just n^2 -
all one needs is the adjacency matrix of G'. Thus, the set L'_f = {(x, i) such
that i ≤ |f(x)|} is clearly computable in logspace. Similarly, the set L_f of
pairs (x, i) such that the i^{th} bit of f(x) is 1 is also computable in logspace:
If i is the index of a pair (v, s) with v ≠ s or of a pair (t, w) with t ≠ w, then
(x, i) ∈ L_f; otherwise, it is part of the input to the PATH instance and can
simply be read off the input tape.
4 Problem 4.5

Show that 2SAT is in NL.

We start with the construction described in the hint: Let ϕ be a 2SAT instance on boolean variables x_1, \ldots, x_n. Assume without loss of generality that each clause in ϕ has exactly two distinct literals and that no clause in ϕ is of the form $x_i \lor \overline{x_i}$. Consider the directed graph G_ϕ with vertex set $\{x_1, \overline{x_1}, x_2, \overline{x_2}, \ldots, x_n, \overline{x_n}\}$ and arc set $\{\ell_1 \rightarrow \ell_2 \text{ such that } (\neg \ell_1 \lor \ell_2) \text{ is a clause in } \phi\}$. (So ℓ_1 and ℓ_2 are literals, i.e., elements of $V(G_\phi)$.) Note that, if $(-\ell_1 \lor \ell_2)$ is in ϕ, then $(\ell_2 \lor -\ell_1)$ is also in ϕ, because \lor is commutative.

Now, if all clauses in ϕ are satisfied, and $(-\ell_1 \lor \ell_2)$ is in ϕ, then $\ell_1 = 1$ implies that $\ell_2 = 1$. This implication relation, $\ell_1 \rightarrow \ell_2$, is transitive. If there is a path (x_1, x_2, \ldots, x_k) in G_ϕ, then there are clauses $(\overline{x_1} \lor x_2), (\overline{x_2} \lor x_3), \ldots, (\overline{x_{k-1}} \lor x_k)$ in ϕ. If all the clauses are satisfied and $x_1 = 1$, then every un-negated literal on the path must also be 1.

Now, ϕ is not satisfied iff $\exists x$ such that there are paths in G from x to \overline{x} and from \overline{x} to x. To see that this is true, note that if there is a variable x for which such paths exist, then $x \rightarrow \overline{x}$ and $\overline{x} \rightarrow x$, which is a logical contradiction — ϕ cannot be satisfied.

Conversely, if such paths do not exist, then ϕ must be satisfied. Assume that such paths do not exist, and that ϕ is a “No” instance. Identify a variable that has not been assigned a value and let x be one of the two corresponding literals such that there is no directed path in G_ϕ from the vertex x to \overline{x} (this must hold for at least one of the literals in the clause). Assign x and every vertex y reachable from x as 1. If this is possible without contradiction (assigning something 0 and 1), then the ϕ is satisfiable. Contradictory values may be assigned in 2 ways: (a) y and \overline{y} are both reachable from x, or (b) y is reachable from x on the current step but was assigned value 0 on a previous step. In case (a), we have a path $x \rightarrow \overline{y}$, and thus (commutativity of \lor) $y \rightarrow \overline{x}$. We already have a path $x \rightarrow y$, so we now have $x \rightarrow \overline{x}$, contradicting our assumption that there are no such paths. In case (b), if $y = 0$ on a previous step, then $\overline{y} = 1$. We have a path $x \rightarrow y$, and by commutativity, $\overline{y} \rightarrow \overline{x}$, which assigned $\overline{y} = 1$, must also have assigned $\overline{x} = 1$ as well. Thus, x was already set to 0 before the current step, contradicting our assumption that this variable was not assigned a value.

Since we can use the PATH algorithm (see section 4.1.2 and theorem 4.18 from the textbook to see that PATH \in NL, indeed, it is NL-complete) to find such paths in NL, and NL $=$ coNL, we can now say 2SAT \in NL.
5 Problem 4.8

Define a function \(f : \{0,1\}^* \rightarrow \{0,1\}^* \) to be write-once logspace computable if it can be computed by an \(O(\log n) \)-space TM \(M \) whose output tape is “write-once” in the sense that, in each step, \(M \) can either keep its head in the same position on that tape or write to it a symbol and move one location to the right. The used cells of the output tape are not counted against \(M \)'s space bound.

Prove that \(f \) is write-once logspace computable if and only if it is implicitly logspace computable in the sense of Definition 4.16.

\((\Rightarrow)\) Suppose \(f \) is write-once logspace computable. Let \(M \) be a write-once TM computing \(f \) in logspace. For any input \((x,i)\), we can compute bit \(i \) of \(f(x) \) in logspace by simply simulating \(M \) without its output tape and keeping a count of how many times \(M \) has written to its write-once output tape. After \(M \) writes for the \(i^{th} \) time, we output the bit it just wrote. We can also check whether \(i \leq |f(x)| \) by simply checking whether \(M \) halts before our counter reaches \(i \). Hence \(f \) is implicitly logspace computable.

\((\Leftarrow)\) Suppose \(f \) is implicitly logspace computable. Let \(M \) be a logspace TM recognizing \(\{(x,i)|f(x)_i = 1\} \) and \(M' \) be a logspace TM recognizing \(\{(x,i)|i \leq |f(x)|\} \). Given an input \(x \), we can output \(f(x) \) in a write-once fashion by simply running \(M \) on \((x,1)\) and outputting the result, and then running \(M \) on \((x,2)\) and outputting the result, etc. We continue doing this until we reach \((x,i)\), where \(i \not\leq |f(x)| \) (which is checked each time using \(M' \)), at which point we halt with precisely \(f(x) \) on the output tape. Note that this requires a counter for the current bit – this counter is guaranteed to take only log space since \(|f(x)| \) is polynomial in \(|x| \).