1

Fill in the holes (boldfaced "WHY"s) in the posted proof of the Baker-Gill-Solovay Theorem (notes for Lecture 5).

WHYNOT-1: Had we done so, we would still have that $P^{\text{EXPCOM}} \subseteq NP^{\text{EXPCOM}}$ and that $EXP \subseteq P^{\text{EXPCOM}}$. However, the foregoing proof that $NP^{\text{EXPCOM}} \subseteq EXP$ would not go through. We have an input x of length n for which we are trying to determine membership in $L(W^{\text{EXPCOM}})$. In time $p_1(n)$, W could construct a query (M, y, t), where $t = 2^{p_1(n)}$, because writing down such a t requires simply writing down one 1 followed by $p_1(n)$ zeroes. Simulating M on input y for 2^t steps would, in this case, require time 2^{2^t}, which is doubly exponential in the length of x, not singly exponential in $|x|$ as we need it to be for this proof.

WHY-2: To determine whether 1^n is in U_B, an NP base machine can simply guess an x of length n and ask the oracle whether it is in B.

WHY-3: Although B has not been completely defined by stage i, all of the answers to queries made by M_i on input 1^n within $2^n/10$ steps have been determined. So, if M_i halts within $2^n/10$ steps, it has all of the information it needs to make a decision about 1^n.

WHY-4: Before stage i begins, no strings of length n have been put into B. So (*) cannot require the answer to a query of length n to be “YES.” During the $(2^n/10)$-step simulation in stage i, the only queries (of any length) to which answers are fixed are those fixed in (**), and all of those answers are “NO.” So no strings of length n are put into B before stage i gets to case 1.

WHY-5: Before stage i, membership in B has not been determined for any strings of length n. During the $(2^n/10)$-step simulation in stage i, membership can be fixed for at most $2^n/10$ strings, of length n or any other length, by (**). There are 2^n strings of length n; thus, membership in B has not yet been decided for at least one of them (indeed for at least 90% of them) by the time stage i gets to case 2.
WHY-6: At this point in the proof, membership has only been fixed for those q that are considered in (**) for some stage i and for (possibly not all) strings in $\{0,1\}^n$, where n is the length used in some stage i. Clearly, this need not be all of $\{0,1\}^*$. To complete the definition of B, we can just take any string whose membership has not yet been determined to be a non-member of B. Of course, there are other ways to complete the definition; the point is that a membership bit must be defined for each string.

2

Prove that there is an oracle A such that $\text{coNP}^A = \text{NP}^A$ and an oracle B such that $\text{coNP}^B \neq \text{NP}^B$.

We begin by showing that $\exists A$ such that $\text{NP}^A = \text{coNP}^A$. Take $A = \text{TQBF}$. First we show that $\text{NP}^A = \text{P}^A$. Clearly, $\text{P}^A \subseteq \text{NP}^A$ for any oracle A. For the other direction, $\text{NP}^{\text{TQBF}} \subseteq \text{NPSPACE}^{\text{TQBF}} \subseteq \text{NPSPACE}$ since we can compute instances of TQBF in polynomial space instead of asking the oracle. From Savitch’s theorem, we know that $\text{NPSPACE} \subseteq \text{PSPACE}$. Finally, Theorem 4.13 shows that TQBF is PSPACE-complete, which gives us $\text{NP}^{\text{TQBF}} = \text{P}^{\text{TQBF}}$. Similarly, $\text{coNP}^A = \text{coP}^A$. Also, trivially, $\text{P}^A = \text{coP}^A$. Summing up, we have: $\text{NP}^A = \text{P}^A = \text{coP}^A = \text{coNP}^A$.

Next, we show that $\exists B$ such that $\text{NP}^B \neq \text{coNP}^B$. For any oracle B, let L_B be the set of all strings w for which no string of equal length appears in B. That is, $L_B = \{w | \exists x \in B, |x| = |w|\}$.

For any B, it holds that $L_B \in \text{coNP}^B$. We show this by proving that $L_B \in \text{NP}^B$. Given input w, a non-deterministic oracle M guesses a string x of length $|w|$ and checks if $x \in B$. If so, it outputs 1, else 0. If $w \notin L_B$, there exists an x of the same length, so M accepts. Similarly, if $w \notin L_B$, then M always rejects.

We now define B so that $L_B \notin \text{NP}^B$. Let M_1, M_2, \ldots be the list of all NDTMs. We assume that M_i runs in time at most n^i. We set $B = \emptyset$. Now, at step i, let n be a number larger than any string that has been classified (we know whether it is in B or not), and $2^n > n^i$. M_i is run on input 1^n. For every oracle query y that M_i makes: if $y \in B$ can be determined, then answer appropriately, else, answer “no” and set $y \notin L_B$.

Now, if M_i rejects on every branch, then all strings y of length n are not in B (so $\exists x \in B$ of length n and $1^n \in L_B$). Otherwise, there must exist a branch where M_i accepts 1^n. We fix this branch and set $y \in \{0,1\}^n$ be a string that was not queried. Then, we define $y \in B$ and remove all other
strings of length n from B. (Note that setting $y \in B$ does not change the
decision on the fixed path.)

Now that we have defined B, we claim that no NP-machine decides B.
Let M be an NP-machine. Then, $M = M_i$ for some i. Now, if $M_i(1^n)$ is a
case where all branches reject, then by the construction of B, we have that
$1^n \in L_B$, so M_i does not decide B. If not all branches reject, then there is at
least one accepting path even where $y \in B$ with $|y| = n$. Thus, M_i accepts
even though $1^n \not\in B$ (as we just said, $\exists y \in B | |y| = n$). So, M_i does not
decide B.

3 Problem 4.4

Show that the following language is NL-complete:

$$\{\langle G, s, t \rangle : G \text{ is a strongly connected digraph} \}$$

Denote this set by SCD (for “strongly connected digraph”). First, we
must show that SCD is in NL. Assume that G is given as an adjacency
matrix and that $V(G) = \{1, \ldots, n\}$. Recall that, on September 18, 2012, we
gave the following NL procedure to recognize the set PATH, $i.e.$, the set of
triples (G, s, t) such that there is a path from s to t in the digraph G.

\begin{verbatim}
PATH(G, s, t)
{
 i ← 0;
 u ← s;
 WHILE(i ≤ n)
 {
 IF (u = t) THEN OUTPUT(ACCEPT) AND HALT;
 GUESS u′ ∈ V(G);
 IF ((u, u′) ∈ A(G)) THEN u ← u′;
 i ← i + 1;
 }
 OUTPUT(REJECT) AND HALT;
}
\end{verbatim}

To recognize SCD, we simply run PATH on each pair of nodes in G.

\begin{verbatim}
SCD(G)
{
 FOR 1 ≤ s ≤ n
\end{verbatim}
FOR $1 \leq t \leq n$

IF (PATH$(s, t) = \text{REJECT}$) THEN OUTPUT(REJECT) AND HALT;
OUTPUT(ACCEPT) AND HALT;

}

Note that this procedure SCD is nondeterministic, because PATH is nondeterministic. Moreover, because PATH runs in logspace, SCD requires only logspace, because each of s and t can be written down in $O(\log n)$ bits, and we can reuse the space we used for one s-t pair when we do the computation for the next pair.

To show that every problem in NL is logspace-reducible to SCD, it suffices to show that PATH is logspace-reducible to SCD. Let (G, s, t) be a PATH instance, where $G = (V, A)$. The corresponding instance $f(G, s, t)$ of SCD is $G' = (V, A')$, where A' contains all arcs in A, plus all arcs of the form (v, s), where $v \neq s$, and all arcs of the form (t, v), where $v \neq t$.

First, we must show that $(G, s, t) \in \text{PATH}$ if and only if $G' \in \text{SCD}$. If $(G, s, t) \in \text{PATH}$, then there is a path $s \rightarrow \cdots \rightarrow t$ in G. Thus, for any v and w in V, there is a path $v \rightarrow s \rightarrow \cdots \rightarrow t \rightarrow w$ in G'; this means that $G' \in \text{SCD}$. On the other hand, if $G' \in \text{SCD}$, then there is a path from v to w for any pair of nodes v and w in V, and, in particular, there is one from s to t. But what is a path $v_0 = s \rightarrow v_2 \rightarrow \cdots \rightarrow v_\ell = t$ in G' from s to t used one or more arcs that were not in the original instance’s graph G. If it did, then it would not be a simple path, i.e., it would visit s or t or both more than once, because all of the arcs in G' that are not in G have s or t as an endpoint. Such a path must contain a subpath $v_i \rightarrow \cdots \rightarrow v_j$ that starts at $v_i = s$, ends at $v_j = t$, and has no occurrence of s or t between v_i and v_j. That subpath is a path from s to t in the original instance.

Next, we must show that the reduction f is implicitly logspace-computable. If x is a PATH instance that contains an n-node graph G, then $|x| = n^2 + 2 \log n + c$ for some constant c — n^2 bits for the adjacency matrix of G, $2 \log n$ for s and t, and c bits for “delimiters” between the adjacency matrix and s and between s and t. The length of SCD instance $f(x)$ is just n^2 — all one needs is the adjacency matrix of G'. Thus, the set $L'_f = \{(x, i) \text{ such that } i \leq |f(x)|\}$ is clearly computable in logspace. Similarly, the set L_f of pairs (x, i) such that the i^{th} bit of $f(x)$ is 1 is also computable in logspace: If i is the index of a pair (v, s) with $v \neq s$ or of a pair (t, w) with $t \neq w$, then $(x, i) \in L_f$; otherwise, it is part of the input to the PATH instance and can simply be read off the input tape.
4 Problem 4.8

Define a function \(f : \{0, 1\}^* \to \{0, 1\}^* \) to be write-once logspace computable if it can be computed by an \(O(\log n) \)-space TM \(M \) whose output tape is “write-once” in the sense that, in each step, \(M \) can either keep its head in the same position on that tape or write to it a symbol and move one location to the right. The used cells of the output tape are not counted against \(M \)’s space bound.

Prove that \(f \) is write-once logspace computable if and only if it is implicitly logspace computable in the sense of Definition 4.16.

\((\Rightarrow)\) Suppose \(f \) is write-once logspace computable. Let \(M \) be a write-once TM computing \(f \) in logspace. For any input \((x, i)\), we can compute bit \(i \) of \(f(x) \) in logspace by simply simulating \(M \) without its output tape and keeping a count of how many times \(M \) has written to its write-once output tape. After \(M \) writes for the \(i^{th} \) time, we output the bit it just wrote. We can also check whether \(i \leq |f(x)| \) by simply checking whether \(M \) halts before our counter reaches \(i \). Hence \(f \) is implicitly logspace computable.

\((\Leftarrow)\) Suppose \(f \) is implicitly logspace computable. Let \(M \) be a logspace TM recognizing \(\{(x, i) | f(x) = 1 \} \) and \(M' \) be a logspace TM recognizing \(\{(x, i) | i \leq |f(x)| \} \). Given an input \(x \), we can output \(f(x) \) in a write-once fashion by simply running \(M \) on \((x, 1)\) and outputting the result, and then running \(M \) on \((x, 2)\) and outputting the result, etc. We continue doing this until we reach \((x, i)\), where \(i \not\leq |f(x)| \) (which is checked each time using \(M' \)), at which point we halt with precisely \(f(x) \) on the output tape. Note that this requires a counter for the current bit – this counter is guaranteed to take only log space since \(|f(x)| \) is polynomial in \(|x| \).