1 Problem 17.1

Bayes Net

Given a 3CNF formula x, let $x^i = x_1 = x_2 = \ldots = x_i = 1$ (i.e. substitute 1 for all x_1, \ldots, x_i and simplify into another 3CNF). Let $f(x)$ be the percentage of satisfying assignments of x where $x_1 = 1$, and $S(x)$ be the total number of satisfying assignments of x. Then $f(x) = S(x^1)/S(x)$, and $S(x) = S(x^1)/f(x) = S(x^1)/(f(x)f(x^1)) = \cdots = \Pi_{i=0}^{n}1/f(x^i)$. Both of these formulas are computable in polynomial time given an oracle for S or f, respectively, so $FP^{\#SAT} = FP^I$, i.e. f is equivalent to $\#SAT$.

2 Problem 17.2

Computing the Permanent

Given a matrix M with integer entries, interpret it as a complete directed graph G with integer edge weights and self edges. Then $perm(M)$ is the sum of the weights of all cycle covers of G. We can now use the construction described on pages 350-351 in the textbook, where integer weights are replaced by parallel edges representing the integer’s decomposition into binary, to obtain a graph G' containing only edge weights in $\{-1, 0, 1\}$ such that, letting M' be the matrix representation of G', we have $perm(M') = perm(M)$. Now we can simply use the formula on page 347 to compute $perm(M')$ by making two calls to our $\#SAT$ oracle. Hence computing the permanent is in $FP^{\#SAT}$.

3 Problem 17.3

XOR Gadget

Consider the XOR gadget on page 349 of the textbook. Label the vertices forming the central diamond a, b, c, d starting from the top and going around in counterclockwise order. Let C be a cycle cover of G with weight w.

Case 1: C uses exactly one of $\{(u, u'), (v, v')\}$

Case 1a: C uses (u, u') but not (v, v'). Since the weight of (u, u') in G is 1, if we take a path from u to u' in G' of length k, then the overall cycle cover value is increased by kw. We sum this over all cycle covers involving a path from u to u':

1. $\{(u, b, a, c, d, u')\}$; weight = $2w$
2. $\{(u, b, c, a, d, u')\}$; weight = $-w$
3. $\{(u, b, a, d, u'), (c, c)\}$; weight = w
4. $\{(u, b, c, d, u'), (a, a)\}$; weight = $2w$
5. $\{(u, b, d, u'), (a, a), (c, c)\}$; weight = w
6. $\{(u, b, d, u'), (a, c, a)\}$; weight = $-w$

So the total is indeed $4w$.

Case 1b: C uses (v, v') but not (u, u'). We look at all the paths from v to v' now:

1. $\{(v, d, c, a, b, v')\}$; weight = $3w$
2. $\{(v, d, a, b, v'), (c, c)\}$; weight = w

Once again the total is $4w$ as desired.

Case 2: C uses neither of $\{(u, u'), (v, v')\}$. Then any cycle cover in G' must cover a, b, c, d separately. The possibilities are:

1. $\{(a, b, c, d, a)\}$; weight = $-2w$
2. $\{(a, b, d, a), (c, c)\}$; weight = $-w$
3. $\{(a, b, a), (c, d, c)\}$; weight = $6w$
4. $\{(a, b, d, a)\}$; weight = $-3w$

Here the total is 0 as desired.

Case 3: C uses both of $\{(u, u'), (v, v')\}$. Looking at the XOR gadget, it's clear that the only way for this to work is if we use all of the edges $(u, b), (b, v'), (v, d), (d, u')$. Thus the possibilities are:

1. $\{(u, b, v'), (v, d, u'), (a, c, a)\}$; weight = w
2. $\{(u, b, v'), (v, d, u'), (a, a), (c, c)\}$; weight = $-w$

which again sum to 0.
4 Problem 17.4

#CYCLE Approximation

Suppose we have a TM M that approximates #CYCLE to within a factor of 2 in polynomial time. We will show that we can determine whether a graph G has a Hamiltonian cycle in polynomial time, and so $P = NP$ since this is an NP-complete problem. If G has 4 or fewer vertices, then just brute force check for a Hamiltonian cycle, taking constant time. Otherwise, assume $n > 4$. Let graph G' be as in the proof of Theorem 17.4 in the book, and let x be the number of cycles in G'. It’s shown in the book that if G has a Hamiltonian cycle, then $x \geq n^{n^2}$, whereas if G doesn’t have a Hamiltonian cycle, then $x \leq n^{n^2-1}$. Now run M on G' to get output y. By our approximation assumption, we know that $y/2 \leq x \leq 2y$. Thus, if G has a Hamiltonian cycle, then $y \geq n^{n^2}/2$, and if G doesn’t have one, then $y \leq 2n^{n^2-1}$. But $n > 4 \Rightarrow 4/n < 1 \Rightarrow 2/n < 1/2 \Rightarrow 2n^{n^2}/n < n^{n^2}/2 \Rightarrow 2n^{n^2-1} < n^{n^2}/2$. Hence the two possible ranges for y are disjoint, and so we can determine whether G has a Hamiltonian cycle in polynomial time.