
․- tud: ford x s.t. (x, x) is egul.

Linear Programming

linear programming (scipy. linprog)

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=1 \\
x_{1}, x_{2}, x_{3} \geqslant 0
\end{array}
$$

divide by v to eliminate v

$$
-0.20 p_{1}-0.28 p_{2}-0.33 p_{3} q-1 \quad b-u b
$$

a) 17 and $0 \leq p_{i}=\frac{x_{i}}{v}=\frac{1}{v} \leq 5$

$$
\frac{\text { bounds }}{(0,5)}
$$

$\angle P$ returns p_{1}, p_{2}, p_{3} and $\left.p_{1}+p_{2}+p_{2}\right)=\frac{1}{v}$ payoff matrix

$$
\text { II recover } x_{i} \text { with } x_{i}=p_{i} \cdot v=\frac{p_{i}}{p_{1}+p_{2}+p_{3}}
$$

$$
\begin{aligned}
& p_{i}=\frac{x_{i}}{v} \\
& x_{i}=v \cdot p_{i}
\end{aligned}
$$

minimize v subject to
lowest value in

since because $v \geq 0.20$
resent. fun

$$
\begin{aligned}
& E(1, y)=0.30 y_{1}+0.25 y_{2}+0.20 y_{3} \leq v \\
& E(z, Y)=0.26 y_{1}+0.33 y_{2}+0.28 y_{3} \leq v \\
& F(B, y)=0.28 y_{2}+0.30 y_{2}+0.33 y_{2} \leq v
\end{aligned}
$$

$$
\begin{aligned}
& -0.25 \frac{x_{1}}{v}-0.33 \frac{x_{2}}{v}-0.30 \frac{x_{3}}{v} \leq-1 \\
& -0.20 \frac{x_{1}}{v}-0.28 \frac{x_{2}}{v}-0.33 \frac{x_{3}}{v} \leq-1 \\
& \text { let } p_{i}=\frac{x_{i}}{V} \\
& -0.30 p_{1}-0.26 p_{2}-0.28 p_{3} \leqslant-1 \\
& -0.25 p_{1}-0.33 p_{2}-0.30 p_{3} \\
& \begin{array}{l}
28 \frac{x_{3}}{2} \leq-1 \\
.30 \frac{x_{3}}{2} \leq-1 \quad \text { maximize } v
\end{array} \\
& \text { Minimize } \\
& \frac{\underline{P}_{1}+P_{2}+P_{3}}{T}=\frac{x_{1}}{V}+\frac{x_{2}}{V}+\frac{x_{3}}{V} \\
& \prod_{c}^{\uparrow}(1,1)=\frac{\left(x_{1}+x_{2}+x_{3}\right)}{V}=\frac{1}{V}
\end{aligned}
$$

$$
\begin{aligned}
& E(3, T)=0.26 y_{1}+0.35 y_{2}+0.68 y_{3} \leq v \\
& E(3, y)=0.28 y_{2}+0.30 y_{2}+0.33 y_{3} \leq v
\end{aligned}
$$

\Downarrow divide by v, replace $\frac{Y_{i}}{v}$ with q_{i}

$$
a_{1}=A\left(\begin{array}{l}
0.30 q_{1}+0.25 q_{2}+0.20 q_{3}^{3} \\
0.26 q_{1}+0.33 q_{2}+6.28 q_{3} \\
0.28 q_{1}+0.30 q_{2}+0.33 q_{3}
\end{array}\right)=\left(\begin{array}{l}
c=(-1,-1, \ldots-1)
\end{array} b_{-b}=(1, \ldots, 1)\right.
$$

$$
0 \leq q_{i} \leq 5
$$

$L P$ returns q_{i} and $-q_{1}-q_{2}-q_{3} \quad v=\frac{1}{q_{1}+q_{2}+q_{3}}$ recover y_{i} with $y_{i}<q_{i} \cdot v=\frac{q_{i}}{q_{i}+q_{i}+q_{3}}$
X, Y is equilibrium if and only if $E_{E_{I}}(x, Y) \leq E_{\Sigma}(X, Y)$ for all $;$

$$
\begin{array}{llll}
F & F & 0 & \\
0 & 4,1 & 0,0
\end{array} \quad X=\left(\begin{array}{ll}
\frac{3}{4} & \frac{1}{4}
\end{array}\right) \quad Y=\left(\begin{array}{ll}
\frac{1}{5} & \frac{4}{5}
\end{array}\right)
$$

Non linear programming: maximize
subject to

$$
\begin{gathered}
E_{\mathbf{I}}(x, y)+E_{\mathbb{I}}(x, y)-p-q \\
\sum_{i=1}^{\infty} \sum_{j=1}^{m} \underbrace{x_{i} \cdot y_{j} \cdot a_{i j}}_{N_{\text {non linear }}!}
\end{gathered}
$$

$$
A=\left(\begin{array}{ccc}
\frac{3}{2} & -1 & 2 \\
2 & 1 & 0 \\
0 & 2 & 1
\end{array}\right) \quad B=\left(\begin{array}{ccc}
1 & 2 & \frac{5}{4} \\
1 & -1 & 0 \\
0 & 1 & \frac{5}{4}
\end{array}\right)
$$

Policy:
Sunctican fom pue)
states \rightarrow (actions) $:$ middle midell corms
stante

$$
\begin{aligned}
& \text { an action } \\
& \pi 6 \\
& 0
\end{aligned}
$$

$$
0_{0}-\cdots
$$

$$
-
$$

\# pure stratesus $=40^{\left(10^{12}\right)}$

$$
\begin{aligned}
& \begin{array}{l}
\text { \# 单 \# \# } \\
\text { an actican opplass } 6 \div 40
\end{array} \\
& \text { C) } 26 \text { opluss } 6 \approx 40
\end{aligned}
$$

Each player antes 1 unit
Deal one card to each player

4 card deck A, K, Q, J of clubs
PI strategy: $\frac{1}{A} \frac{1}{K} \frac{0}{Q} \frac{1}{J} \frac{X}{A 01} \frac{X}{K 01} \frac{0}{Q 01} \frac{X}{J 01}$
PZ strategy: $\frac{1}{A O} \frac{1}{K O} \frac{O}{Q O} \frac{O}{J O} \quad \frac{1}{A 1} \quad \frac{1}{K 1} \frac{O}{Q 1} \frac{O}{J 1}$

$$
\begin{array}{lll}
\frac{P 1}{A} & \frac{P Z}{K} & +2 \\
\mathbf{A} & \mathbf{Q} & +1 \\
\mathbf{A} & J & +1 \\
\mathbf{K} & \mathbf{A} & -2 \\
\mathbf{K} & \mathbf{Q} & +1 \\
\mathbf{K} & \mathbf{J} & +1 \\
\mathbf{Q} & \mathbf{A} & -1 \\
\mathbf{Q} & \mathbf{K} & -1 \\
\mathbf{Q} & \mathbf{J} & +1 \\
\mathbf{J} & \mathbf{A} & -2 \\
\mathbf{J} & \mathbf{K} & -2 \\
\mathbf{J} & \mathbf{Q} & +1
\end{array}
$$

