
Anatomy of a Large-Scale Hypertextual
Web Search Engine by Sergey Brin

and Lawrence Page (1997)

Presented By Wesley C. Maness

2

Outline

Desirable Properties
Problem; Google’s reasons
Architecture
PageRank
Open Problems & Future Direction

3

Desirable Properties wrt Google

Input
– Keyword(s)

Output
– Will return to the user what the user wants/needs

and NOT what the search engine thinks you
want/need.

4

The Problems then and current
It isn’t easy to search when you consider your search space and the properties of your search
space.
Web is vast and growing exponentially
Web is heterogeneous

– ASCII
– HTML
– Images
– Video files
– Java applets
– Machine generated files (log files, etc.)
– Etc.

Web is volatile
Distributed
Freshness
Human Maintained Lists cannot keep up
External meta information that can be inferred from a document may or may not be accurate
about the document
Google had the solution then…

Google Architecture(1)
Crawler – crawls the web
Urlserver: sends links to the
Webcrawler to navigate
Storeserver: stores pages
crawled by the webserver
Indexer: retrieves the stored
webpages

– parses each document
– converts the words into hit

lists
– distributes the words to

barrels for storage
– parses out all links and stores

them in an anchor file
UrlResolver: converts links to
absolute Urls

– Converts these Urls to
DocID's

– Stores them in the forward
index

Sorter: converts the barrels of
DocID's to WordID's

– Resorts the barrels by
WordID's

– Uses the WordID's to create
an inverted Index

Searcher: responds to querries
using PageRank, inverted Index,
and DumpLexicon

Google Architecture(2)
Repository - Stores the html for every
page crawled Compressed using zlib
Doc Index - Keeps information about
each document Sequentially stored,
ordered by DocID Contains:

– Current document status
– Pointer into the repository
– Document checksum
– File for converting URLs to

DocID's
– If the page has been crawled, it

contains: A pointer to DocInfo ->
URL and title If the page has not
been crawled, it contains: A
pointer to the URLList -> Just the
URL

Lexicon is stored in memory and
contains:

– A null separated word list
– A hash table of pointers to these

words in the barrels (for the
Inverted Index)

– An important feature of the
Lexicon is that it fits entirely into
memory (~14 Million)

Google Architecture(3)
Forward Index - Stored in (64)barrels
containing:

– A range of WordID's, The DocID
of a pages containing these
words, A list of WordID's followed
by corresponding hit lists,Actual
WordID's are not stored in the
barrels; instead, the difference
between the word and the
minimum of the barrel is stored,
This requires only 24 bits for each
WordID,Allowing 8 bits to hold the
hit list length

Inverted Index - Contains the same
barrels as the Forward Index, except
they have been sorted by docID’s, All
words are pointed to by the Lexicon,
Contains pointers to a doclist
containing all docID’s with their
corresponding hit lists.

– The barrels are duplicated
– For speed in single word searches

8

Hit Lists
A list of occurrences of each word in a particular document

– Position
– Font
– Capitalization

The hit list accounts for most of the space used in both indices
Uses a special compact encoding algorithm

– Requiring only 2 bytes for each hit
The hit lists are very important in calculating the Rank of a page
There are two different types of hits:
Plain Hits: (not fancy)

– Capitalization bit
– Font Size (relative to the rest of the page) -> 3 bits
– Word Position in document -> 12 bits

Fancy Hits (found in URL, title, anchor text, or meta tag)
– Capitalization bit
– Font Size - set to 7 to indicate Fancy Hit -> 3 bits
– Type of fancy hit -> 4 bits
– Position -> 8 bits

If the type of fancy hit is an anchor, the Position is split:
– 4 bits for position in anchor
– 4 bits for hash of the DocID the anchor occurs in

The length of the hit list is stored before the hits themselves

9

What is PageRank? And why?

What is PageRank?:
– Assumptions

A page with many links to it is more likely to be useful than one with few links to it
The links from a page that itself is the target of many links are likely to be particularly important

– PageRank is a citation importance ranking
Approximated measure of importance or quality
Number of citations or backlinks

Why?:
– Attempts to model user behavior
– Captures the notion that the more a page is pointed to by “important” pages, the more it

is worth looking at, votes
– Takes into account “assumed” global structure of web
– Assumption: Important pages are pointed to by other important pages.
– Link “A ⇒ B” often means “A thinks B is important”

10

PageRank Calculation

Variables:
– d: damping factor, normally this is set to 0.85
– Ti – page pointing to page P
– PageRank(Ti): PageRank of page Ti pointing to page P
– C(Ti): the number of links going out of page Ti

How is it calculated?

– 1. Spider the web to generate NxN link matrix A
A[i,j] = 1 iff page Pi contains link to page Pj

– 2. Simple iterative algorithm:
Initialize PageRank[Pi]=1 for each page Pi
Repeat many times

(Jan 1998) PR converges to a reasonable tolerance on a link database of 322Mill
in 52 iterations. Half the data took 45 iterations.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= ∑

=

)(

1)(
)()1()(

PC

i i

i

TC
TPageRankddPPageRank

PageRank Example
Page A
PR=1

Page C
PR=1

Page B
PR=1

Page D
PR=1

Page A
PR=1.49

Page C
PR=1.577

Page B
PR=.783

Page D
PR=.15

After 20+
iterations
with
d=.85

Google's PR Evaluation

-

0.500

1.000

1.500

2.000

2.500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Page A
Page B
Page C
Page D

12

Sample Google Query
Evaluation

1. Parse the query.
2. Convert words into wordIDs.
3. Seek to the start of the doclist in the short barrel for every word.
4. Scan through the doclists until there is a document that matches

all the search terms.
5. Compute the rank (Would be a weighted computation of PR and

the hitlist) of that document for the query.
6. If we are in the short barrels and at the end of any doclist, seek

to the start of the doclist in the full barrel for every word and go
to step 4.

7. If we are not at the end of any doclist go to step 4.
8. Sort the documents that have matched by rank and return the

top k.

13

Summary of Key Optimization
Techniques

– Each crawler maintains its own DNS lookup cache
– Use flex to generate lexical analyzer with own stack for parsing

documents
– Parallelization of indexing phase
– In-memory lexicon
– Compression of repository
– Compact encoding of hitlists accounting for major space

savings
– Document index is updated in bulk
– Critical data structures placed on local disk

14

Ongoing/Future Work
• The PageRank is dead argument from The act of Google trying to
"understand" the web caused the web itself to change. Jeremy Zawodny – i.e.
PageRank’s assumption of the citation model had major impacts on web site
layout, along with the ever-changing web. ‘Google Bombing’ – i.e. the web search
for “miserable failure” due to bloggers. Also, AdWords->AdSense and the public
assumption of a conspiracy – note the Florida Algorithm. More efficient means of
rank calculation.

•Personalization for results – give you what you want, usage of cookies, etc. –
based on previous searches. This works very well with contextual paid listings
(purchase of Applied Semantics) Yahoo has the advantage of user-lock-in and
being a portal. (Mooter accomplishes this by learning or remembering previous
search results per user and re-ranks search results.

•Context Sensitive results

•Natural Language queries askMSR

•Cluster-based/Geographic-based search results (Mooter)

•Authority-based – Teoma’s technology search results are weighted by authorities
that are determined via a citation weighted model (similiary to PR) and cross-
verified by human/subject-specific experts. - Highly accurate not scalable

Peer-to-Peer Information Retrieval
Using Self-Organizing

Semantic Overlay Networks

Hong Ge

16

Peer-to-Peer
Information Retrieval

Distributed Hash Table (DHT)
– CAN, Chord, Pastry, Tapestry, etc.
– Scalable, fault tolerant, self-organizing
– Only support exact key match

Kd=hash (“books on computer networks”)
Kq=hash (“computer network”)

Extend DHTs with content-based search
– Full-text search, music/image retrieval

Build large-scale search engines using P2P
technology

17

Focus and Approach in pSearch

Efficiency
– Search a small number of nodes
– Transmit a small amount of data

Efficacy
– Search results comparable to centralized

information retrieval (IR) systems
Extend classical IR algorithms to work in
DHTs, both efficiently and effectively

18

Outline

Key idea in pSearch
Background
– Information Retrieval (IR)
– Content-Addressable Network (CAN)

P2P IR algorithm
Experimental results
Open issues

19
search region for the query

3 3
3

pSearch Illustration

query doc1

4 42

semantic space doc

20

Background

Statistical IR algorithms
– Vector Space Model (VSM)
– Latent Semantic Indexing (LSI)

Distributed Hash Table (DHT)
– Content-Addressable Network (CAN)

21

Background:
Vector Space Model

– d documents in our corpus
– t terms (vocabulary)
– Represented by a t × d term-document matrix A

Elements aij
– aij = lij gi

gi is a global weight corresponding to the importance of
term i as an index term for the collection

– Common words have low global weights
lij is a local weight corresponding to the importance of term
i in document j

22

Background:
Latent Semantic Indexing

Va Vb

documents

terms …..

V’a V’b

semantic vectors

SVD …..

SVD: singular value decomposition
– Reduce dimensionality
– Suppress noise
– Discover word semantics

Car <-> Automobile

23

Background:
Content-Addressable Network

A B

C D E

• Partition Cartesian
space into zones

• Each zone is assigned
to a computer

• Neighboring zones
are routing neighbors

• An object key is a
point in the space

• Object lookup is done
through routing

24

Outline

Key idea in pSearch
Background
– Information Retrieval (IR)
– Content-Addressable Network (CAN)

P2P IR algorithm
Experimental results
Open issues and ongoing work
Conclusions

25

pLSI Basic Idea

Use a CAN to organize nodes into an overlay
Use semantic vectors generated by LSI as
object key to store doc indices in the CAN
– Index locality: indices stored close in the overlay

are also close in semantics
Two types of operations
– Publish document indices
– Process queries

26
search region for the query

3 3
3

pLSI Illustration

query doc1

4 42

How to decide
the border of
search region?

27

Content-directed Search

Search the node whose zone contains the query
semantic vector. (query center node)

28

Content-directed Search

Add direct (1-hop) neighbors of query center to pool of
candidate nodes
Search the most “promising” one in the pool suggested
by samples

29

Content-directed Search

Add its 1-hop neighbours to pool of candidate nodes

30

Content-directed Search

Go on until it is unlikely to find better matching documents

31

pLSI Enhancements

Further reduce nodes visited during a search
– Content-directed search
– Multi-plane (Rolling-index)

Balance index distribution
– Content-aware node bootstrapping

32

Multi-plane (rolling index)
4-d semantic vectors

33

Multi-plane (rolling index)
4-d semantic vectors 2-d CAN

34

Multi-plane (rolling index)
4-d semantic vectors 2-d CAN

35

Multi-plane (rolling index)
4-d semantic vectors 2-d CAN

36

Multi-plane (rolling index)
4-d semantic vectors 2-d CAN

37

Multi-plane (rolling index)
4-d semantic vectors 2-d CAN

38

pLSI Enhancements

Further reduce nodes visited during a search
– Content-directed search
– Multi-plane (Rolling-index)

Balance index distribution
– Content-aware node bootstrapping

39

CAN Node Bootstrapping

On node join, CAN picks a random point and splits the
zone that contains the point

40

Unbalanced Index Distribution

semantic vectors of documents

41

Content-Aware Node Bootstrapping

pSearch randomly picks the semantic vector of an
existing document for node bootstrapping

42

Experiment Setup

pSearch Prototype
– Cornell’s SMART system implements VSM
– extend it with implementations of LSI, CAN, and pLSI

algorithms
Corpus: Text Retrieval Conference (TREC)
– 528,543 documents from various sources
– total size about 2GB
– 100 queries, topic 351-450

43

Evaluation Metrics

Efficiency: nodes visited and data
transmitted during a search
Efficacy: compare search results
– pLSI vs. LSI

44

pLSI vs. LSI

– Retrieve top 15 documents
– A: documents retrieved by LSI
– B: documents retrieved by pLSI

45

0

50

100

150

200

250

500 2k 8k 32k 128k

Nodes

Vi
si

te
d

no
de

s

Performance w.r.t. System Size
Accuracy = 90%

Search < 0.2% nodes
Transmit 72KB data

46

Open Issues

Larger corpora
Efficient variants of LSI/SVD
Evolution of global statistics
Incorporate other IR techniques
– Relevance feedback, Google’s PageRank

Querying the Internet with PIER
(PIER = Peer-to-peer Information Exchange and Retrieval)

Presented by Zheng Ma
Yale University

48

Outline

Inroduction
What is PIER?
– Design Principles

Implementation
– DHT
– Query Processor

Performance
Summary

49

Introduction

Databases:
– powerful query facilities
– declarative interface
– potential to scale up to few hundred computers

What about Internet? If we want well distributed system
that has

– query facilities (SQL)
– fault tolerance
– flexibility

PIER is a query engine that scales up to thousands of
participating nodes and can work on various data

50

What is PIER?

Peer-to-Peer Information Exchange and Retrieval
Query engine that runs on top of P2P network
– step to the distributed query processing at a larger scale
– way for massive distribution: querying heterogeneous

data
Architecture meets traditional database query
processing with recent peer-to-peer technologies

51

Design Principles

Relaxed Consistency
– adjusts availability of the system

Organic Scaling
– No need in a priori allocation of a data center

Natural Habitats for Data
– No DB schemas, file system or perhaps a live feed

Standard Schemas via Grassroots Software
– widespread programs provide de facto standards.

52

Outline

Introduction
What is PIER?
– Design Principles

Implementation
– DHT
– Query Engine

Scalability
Summary

53

Implementation – DHT

<< based on CAN

DHT structure:
• routing layer
• storage manager
• provider

Core
Relational
Execution

Engine

ProviderStorage
Manager

Overlay
Routing

Catalog
Manager

Query
Optimizer

Various User Applications

PIER

DHT

Apps

54

Routing layer
maps a key into the IP address of

the node currently responsible for
that key. Provides exact lookups,
callbacks higher levels when the
set of keys has changed

Routing layer API
lookup(key) ipaddr
join(landmarkNode)
leave()
locationMapChange

DHT – Routing & Storage

Storage Manager
stores and retrieves records,

which consist of key/value
pairs. Keys are used to
locate items and can be
any data type or structure
supported

Storage Manager API
store(key, item)
retrieve(key) item
remove(key)

55

DHT – Provider (1)

Provider ties routing and storage manager layers
and provides an interface
Each object in the DHT has a namespace,
resourceID and instanceID
DHT key = hash(namespace,resourceID)

ProviderStorage
Manager

Overlay
Routing

namespace - application or group of object, table
resourceID – what is object, primary key or any attribute
instanceID – integer, to separate items with the same
namespace and resourceID
CAN’s mapping of resourceID/Object is equivalent to an
index

56

DHT – Provider (2)

Provider API
get(namespace, resourceID) item
put(namespace, resourceID, item, lifetime)
renew(namespace, resourceID, instanceID, lifetime)

bool
multicast(namespace, resourceID, item)
lscan(namespace) items
newData(namespace, item)

(1..n)
Node R1

(n+1..m) tuples

(1..n) tuples

Table R (namespace)

(n+1..m)
Node R2

item
rID1

item
rID3

item
rID2

57

Implementation – Query Engine

<< query
processor

QP Structure:
core engine
query
optimizer
catalog
manager

Core
Relational
Execution

Engine

ProviderStorage
Manager

Overlay
Routing

Catalog
Manager

Query
Optimizer

Various User Applications

PIER

DHT

Apps

58

Query Processor

How it works?
– performs selection, projection, joins, grouping, aggregation
– simultaneous execution of multiple operators pipelined together
– results are produced and queued as quick as possible

How it modifies data?
– insert, update and delete different items via DHT interface

How it selects data to process?
– dilated-reachable snapshot – data, published by reachable nodes at

the query arrival time

59

Query Processor – Joins (1)

Symmetric hash join
At each site

(Scan) lscan NR and NS

(Rehash) put into NQ a copy
of each eligible tuple
(Listen) use newData to see
the rehashed tuples in NQ

(Compute) join the tuples as
they arrive to NQ

*Basic, uses a lot of network
resources

Join(R,S, R.sid = S.id)

NX

NX
NR

NS

NR

NS

put(Rtup)

put(S
tup)

newData

multicast query

lscan(NR)

lscan(NS)lscan(NR)

lscan(NS)

NQ

NQ
NR

NS

NR

NS

60

Query Processor – Joins (2)

Fetch matches
At each site

(Scan) lscan(NR)
(Get) for each
suitable R tuple get
for the matching S
tuple
When S tuples
arrive at R, join them
Pass results

*Retrieve only tuples
that matched

Join(R,S, R.sid = S.id)

NR

NXNX

NS

NR

NS

hashed

hashed

get(rID) get(rID)

S tup

Stup

61

Performance: Join Algorithms

0

2000

4000

6000

8000

10000

12000

14000

16000

0 20 40 60 80 100

Selectivity of predicat on relation S

A
ve

ra
ge

 n
et

w
or

k
tr

af
fic

SHJ FM

R + S = 25 GB
n = m = 1024

inbound capacity =
10 Mbps

hop latency =100
ms

62

Query Processor – Join rewriting

Symmetric semi-join
(Project) both R and S to
their resourceIDs and join
keys
(Small rehash) Perform a
SHJ on the two projections
(Compute) Send results into
FM join for each of the tables

*Minimizes initial
communication

Bloom joins
(Scan) create Bloom Filter for a
fragment of relation
(Put) Publish filter for R, S
(Multicast) Distribute filters
(Rehash) only tuples matched
the filter
(Compute) Run SHJ

*Reduces rehashing

63

Performance: Join Algorithms

0

2000

4000

6000

8000

10000

12000

14000

16000

0 20 40 60 80 100

Selectivity of predicat on relation S

A
ve

ra
ge

 n
et

w
or

k
tr

af
fic

SHJ FM SSJ BF

R + S = 25 GB
n = m = 1024

inbound capacity =
10 Mbps

hop latency =100
ms

64

Outline

Introduction
What is PIER?
– Design Principles

Implementation
– DHT
– Query Processor

Scalability
Summary

65

Scalability Simulation

Conditions
|R| =10 |S|
Constants produce
selectivity of 50%

Query:
SELECT

R.key, S.key,
R.pad

FROM R,S
WHERE R.n1 = S.key

AND R.n2 > const1
AND S.n2 > const2
AND f(R.n3,S.n3) >

const3

66

Experimental Results

Equipment:
cluster of 64 PCs
1 Gbps network

Result:
Time to receive 30-th
result tuple
practically remains
unchanged as both
the size and load are
scaled up.

67

Summary

PIER is a structured query system intended to run at
the big scale
PIER queries data that preexists in the wide area
DHT is a core scalability mechanism for indexing,
routing and query state management
Big front of future work:

– Caching
– Query optimization
– Security
– …

68

Backup Slides

69

HitList

“Hitlist” is defined as list of occurrences of a
particular word in a particular document
including additional meta info:
- position of word in doc
- font size
- capitalization
- descriptor type, e.g. title, anchor, etc.

70

Inverted Index

Contains the same barrels as the Forward
Index, except they have been sorted by
docID’s
All words are pointed to by the Lexicon
Contains pointers to a doclist containing all
docID’s with their corresponding hit lists.
– The barrels are duplicated
– For speed in single word searches

71

Specific Design Goals

Deliver results that have very high precision even at
the expense of recall
Make search engine technology transparent, i.e.
advertising shouldn’t bias results
Bring search engine technology into academic realm in
order to support novel research activities on large web
data sets
Make system easy to use for most people, e.g. users
shouldn’t have to specify more than a couple words

72

Crawling the Web

Distributed Crawling system:
– UrlServer
– Multiple crawlers

Issues:
– DNS bottleneck requires cached DNS
– Extremely complex and heterogeneous Web

Systems must be very robust

73

Why do we need d?

In the real world virtually all web graphs are not
connected, i.e. they have dead-ends, islands,
etc.
If we don’t have d we get “ranks leaks”
for graphs that are not connected, i.e. leads to
numerical instability

74

Indexing the Web

Parsing so many different documents is very
difficult
Indexing documents requires simultaneous
access to the Lexicon
– Creates a problem for words that aren’t already in

the Lexicon
Sorting is done on multiple machines, each
working on a different barrel

75

Document Index

Keeps information about each document
Sequentially stored, ordered by DocID
Contains:

– Current document status
– Pointer into the repository
– Document checksum
– File for converting URLs to DocID's

If the page has been crawled, it contains:
– A pointer to DocInfo -> URL and title

If the page has not been crawled, it contains:
– A pointer to the URLList -> Just the URL

This data structure requires only 1 disk seek for each search

76

Lexicon

The lexicon is stored in memory and contains:
– A null separated word list
– A hash table of pointers to these words in the

barrels (for the Inverted Index)
An important feature of the Lexicon is that it fits
entirely into memory

77

Storage Requirements
At the time of publication, Google had the following
statistical breakdown for storage requirements:

78

Single Word Query Ranking

Hitlist is retrieved for single word
Each hit can be one of several types: title, anchor, URL, large font,
small font, etc.
Each hit type is assigned its own weight
Type-weights make up vector of weights
of hits of each type is counted to form count vector
Dot product of two vectors is used to compute IR score
IR score is combined with PageRank to compute final rank

79

Multi-word Query Ranking

Similar to single-word ranking except now must
analyze proximity
Hits occurring closer together are weighted higher
Each proximity relation is classified into 1 of 10 values
ranging from a phrase match to “not even close”
Counts are computed for every type of hit and
proximity

80

Forward Index

Stored in barrels containing:
– A range of WordID's
– The DocID of a pages containing these words
– A list of WordID's followed by corresponding hit lists

Actual WordID's are not stored in the barrels;
instead, the difference between the word and
the minimum of the barrel is stored
– This requires only 24 bits for each WordID
– Allowing 8 bits to hold the hit list length

81

References

1. Sergey Brin and Lawrence Page. “The
Anatomy of a Large-Scale Hypertextual Web
Search Engine”. WWW7 / Computer
Networks 30(1-7): 107-117 (1998)

2. http://searchenginewatch.com/
3. http://www.searchengineshowdown.com/
4. http://www.robotstxt.org/wc/exclusion.html

