natomy of a Large-Scale Hypertextual
Web Search Engine by Sergey Brin
and Lawrence Page (1997)

Presented By Wesley C. Maness

Outline
.

e Desirable Properties

e Problem; Google’s reasons

e Architecture

e PageRank

e Open Problems & Future Direction

Desirable Properties wrt Google

e |nput
- Keyword(s)
e Output

— Will return to the user what the user wants/needs
and NOT what the search engine thinks you
want/need.

The Problems then and current
.

e Itisn’t easy to search when you consider your search space and the properties of your search
space.
e \Web is vast and growing exponentially
e \Web is heterogeneous
- ASCII
- HTML
- Images
- Video files
- Java applets
- Machine generated files (log files, etc.)
- Etc.
Web is volatile
Distributed
Freshness
Human Maintained Lists cannot keep up
External meta information that can be inferred from a document may or may not be accurate
about the document

Google had the solution then...

Google Architecture(1)

e Crawler — crawls the web

e Urlserver: sends links to the
Webcrawler to navigate

e Storeserver: stores pages
crawled by the webserver

e Indexer: retrieves the stored
webpages
— parses each document

— converts the words into hit
lists

— distributes the words to
barrels for storage

- parses out all links and stores
them in an anchor file

e UrlResolver: converts links to
absolute Urls

— Converts these Urls to
DoclID's

- Stores them in the forward
index

e Sorter: converts the barrels of
DoclD's to WordID's

-~ Resorts the barrels by
WordID's

- Uses the WordID's to create
an inverted Index

e Searcher: responds to querries
using PageRank, inverted Index,
and DumpLexicon

Google Architecture(2)

e Repository - Stores the html for every
page crawled Compressed using zlib

e Doc Index - Keeps information about
each document Sequentially stored,
ordered by DoclD Contains:

— Current document status
— Pointer into the repository
— Document checksum

— File for converting URLs to
DoclID's

— If the page has been crawled, it
contains: A pointer to Doclnfo ->
URL and title If the page has not
been crawled, it contains: A
pointer to the URLList -> Just the
URL

e Lexicon is stored in memory and
contains:

— A null separated word list

— A hash table of pointers to these
words in the barrels (for the
Inverted Index)

— An important feature of the
Lexicon is that it fits entirely into
memory (~14 Million)

Google Architecture(3)

e Forward Index - Stored in (64)barrels Repository: 53.5 GB = 147.8 GB uncomprassad
containing: sync| lengin] compressed packet |

svnc| lendgth] compressad packet |
— Arange of WordID's, The DoclID
of a pages containing these

Packet (storad comprassed in repasitony)

words, A list of WordID's followed [docldl ecodel uller] pagafer] url] pags |
by corresponding hit lists,Actual Hit. 2 bytes
WordID's are not stored in the plain:[capT [Tnp:3 position: 17
barrels; instead, the difference a;?:ﬂ%’j;f E:If'q ::EF' :; th;:li":fj hag?]_ﬂflilﬁésﬂ_ .
between the word and the et P P2 i
minimum of the barrel is stored, Faraard Barrels' total 43 GB
This requires only 24 bits for each [docid] wordid: 247 rhits: 2] Rl bl Ri hi
WordID,Allowing 8 bits to hold the niorcliol 22 ninits. 87 Tt it hit Tt
hit list length [docid] wordid: 24 rhits: 2] Rit kil Bt Rl
e Inverted Index - Contains the same ﬁg:g:g; %i QH:E g E:E E:} E:Jt[m
barrels as the Forward Index, except AMIETRIE!
they have be«_’—)n sorted by docID_’s, All Lexicon: 203MB |nverted Barrels: 41 GR
words are pointed to by the Lexicon, Cwordd ndoos] ——ee-[docid: 27] nhits. 5] Wt hit At bit]
Contains pointers to a doclist Cwordid{ ndocs[-] d':"‘"ﬂi 27] nhits. 5] Rt hit E!tlh'
containing all doclD’s with their _wrdid] ndocs “\ EEE _'%; H{:{*E—ﬁ 1 :-| it

corresponding hit lists.
— The barrels are duplicated
— For speed in single word searches

Hit Lists
<

e Alist of occurrences of each word in a particular document
- Position
- Font
- Capitalization
e The hit list accounts for most of the space used in both indices

e Uses a special compact encoding algorithm
- Requiring only 2 bytes for each hit

e The hit lists are very important in calculating the Rank of a page
e There are two different types of hits:

e Plain Hits: (not fancy)
- Capitalization bit
- Font Size (relative to the rest of the page) -> 3 bits
- Word Position in document -> 12 bits

° Fancy Hits (found in URL, title, anchor text, or meta tag)
- Capitalization bit
- Font Size - set to 7 to indicate Fancy Hit -> 3 bits
- Type of fancy hit -> 4 bits
- Position -> 8 bits

e If the type of fancy hit is an anchor, the Position is split:
- 4 bits for position in anchor
- 4 bits for hash of the DoclD the anchor occurs in

e The length of the hit list is stored before the hits themselves

What is PageRank? And why?
S

What is PageRank?:

— Assumptions

e A page with many links to it is more likely to be useful than one with few links to it

e The links from a page that itself is the target of many links are likely to be particularly important
- PageRank is a citation importance ranking

e Approximated measure of importance or quality

e Number of citations or backlinks

Why?:
-~ Attempts to model user behavior

— Captures the notion that the more a page is pointed to by “important” pages, the more it
is worth looking at, votes

-~ Takes into account “assumed” global structure of web
- Assumption: Important pages are pointed to by other important pages.
— Link “A = B” often means “A thinks B is important”

& PageRank (T)

PageRank(P)=(1-d)+d|). T

PageRank Calculation
-

e \Variables:
- d: damping factor, normally this is set to 0.85
- Ti— page pointing to page P
- PageRank(Ti): PageRank of page Ti pointing to page P
— C(Ti): the number of links going out of page Ti

e How is it calculated?

- 1. Spider the web to generate NxN link matrix A
e Alij] = 1iff page P, contains link to page P,
- 2. Simple iterative algorithm:
e |Initialize PageRank[P]=1 for each page P;
e Repeat many times

e (Jan 1998) PR converges to a reasonable tolerance on a link database of 322Mill
in 52 iterations. Half the data took 45 iterations.

PageRank Example

After 20+
iterations
with
d=.85
2.500 —e—Page A
Google's PR Evaluation —m—Page B
2.000
1.500
1.000
0.500
1 2 3 4 5 6 7 8 9 101112 13 1415 16 17 18 19 20 21

Sample Google Query
Evaluation

B b~

Parse the query.
Convert words into wordIDs.
Seek to the start of the doclist in the short barrel for every word.

Scan through the doclists until there is a document that matches
all the search terms.

Compute the rank (Would be a weighted computation of PR and
the hitlist) of that document for the query.

If we are in the short barrels and at the end of any doclist, seek
to the start of the doclist in the full barrel for every word and go
to step 4.

If we are not at the end of any doclist go to step 4.

Sort the documents that have matched by rank and return the
top k.

Summary of Key Optimization
Techniques

- Each crawler maintains its own DNS lookup cache

- Use flex to generate lexical analyzer with own stack for parsing
documents

— Parallelization of indexing phase

— In-memory lexicon

- Compression of repository

- Compact encoding of hitlists accounting for major space
savings

— Document index is updated in bulk

— Critical data structures placed on local disk

Ongoing/Future Work
-

» The PageRank is dead argument from The act of Google trying to
"understand" the web caused the web itself to change. Jeremy Zawodny —i.e.
PageRank’s assumption of the citation model had major impacts on web site
layout, along with the ever-changing web. ‘Google Bombing’ —i.e. the web search
for “miserable failure” due to bloggers. Also, AdWords->AdSense and the public
assumption of a conspiracy — note the Florida Algorithm. More efficient means of
rank calculation.

*Personalization for results — give you what you want, usage of cookies, etc. —
based on previous searches. This works very well with contextual paid listings
(purchase of Applied Semantics) Yahoo has the advantage of user-lock-in and
being a portal. (Mooter accomplishes this by learning or remembering previous
search results per user and re-ranks search results.

*Context Sensitive results

*Natural Language queries askMSR

*Cluster-based/Geographic-based search results (Mooter)

«Authority-based — Teoma'’s technology search results are weighted by authorities
that are determined via a citation weighted model (similiary to PR) and cross-
verified by human/subject-specific experts. - Highly accurate not scalable

Peer-to-Peer Information Retrieval
Using Self-Organizing
Semantic Overlay Networks

Peer-to-Peer
Information Retrieval

e Distributed

Hash Table (DHT)

- CAN, Chord, Pastry, Tapestry, etc.
- Scalable, fault tolerant, self-organizing

— Only support key match
e K,=hash ("books on computer networks”)
e K.=hash ("computer network”)
e Extend DHTs with search

- Full-text search, music/image retrieval
e Build large-scale search engines using P2P

technology

Focus and Approach in pSearch
-

e Efficiency
- Search a small number of nodes
— Transmit a small amount of data

e Efficacy

- Search results comparable to centralized
information retrieval (IR) systems

e Extend classical IR algorithms to work in
DHTs, both efficiently and effectively

Outline
0
e Key idea in pSearch

e Background

- Information Retrieval (IR)
- Content-Addressable Network (CAN)

e P2P IR algorithm
e Experimental results
e Open issues

pSearch lllustration

<
‘4 2 4 ¢ °
@)
@ © o
T search regiorll for the query ®
semantic space doc

Background
S

e Statistical IR algorithms
- Vector Space Model (VSM)
- Latent Semantic Indexing (LSI)
e Distributed Hash Table (DHT)
- Content-Addressable Network (CAN)

Background.:
Vector Space Model

- d documents in our corpus
- tterms (vocabulary)
- Represented by a t x d term-document matrix A

e Elements aj;

- a;=1; g,
e g;is a global weight corresponding to the importance of
term / as an index term for the collection

-~ Common words have low global weights

e /;is a local weight corresponding to the importance of term
i in document j

Background.:
Latent Semantic Indexing

documents semantic vectors
Va Vb Va Vb

terms

- Reduce dimensionality
— Suppress noise

— Discover word semantics
e Car <-> Automobile

Background.:
Content-Addressable Network

B « Partition Cartesian
space Into zones

; ; « Each zone is assigned
—— to a computer

« Neighboring zones

| «An object key is a
| point in the space

« Object lookup is done
through routing

/ are routing neighbors
[

Outline
.

e Key idea in pSearch

e Background

- Information Retrieval (IR)
- Content-Addressable Network (CAN)

®

e Experimental results

e Open issues and ongoing work
e Conclusions

pLSI| Basic Idea
S

e Use a CAN to organize nodes into an overlay

e Use semantic vectors generated by LSI as
object key to store doc indices in the CAN

e Two types of operations
- Publish document indices
- Process queries

pLSI lllustration

query doc

. How to decide

the border of

search regiorll for the query search reg ion?

Content-directed Search
.

e Search the node whose zone contains the query
semantic vector. (

Content-directed Search
.

e Add direct (1-hop) neighbors of query center to pool of
candidate nodes

e Search the most “promising” one in the pool suggested
by samples

Content-directed Search
.

e Add its 1-hop neighbours to pool of candidate nodes

Content-directed Search
.

e Go on until it is unlikely to find better matching documents

pLS| Enhancements
.

e Further reduce nodes visited during a search
- Content-directed search

e Balance index distribution
- Content-aware node bootstrapping

Multi-plane (rolling index)

|||||||||||||||

Multi-plane (rolling index)

|||||||||||||||

Multi-plane (rolling index)

|||||||||||||||

Multi-plane (rolling index)

|||||||||||||||

Multi-plane (rolling index)

|||||||||||||||

Multi-plane (rolling index)

|||||||||||||||

pLS|I Enhancements
-

e Further reduce nodes visited during a search
- Content-directed search
- Multi-plane (Rolling-index)

CAN Node Bootstrapping

e On node join, CAN picks a random point and splits the
zone that contains the point

Unbalanced Index Distribution

O .
semantic vectors of documents

Content-Aware Node Bootstrapping

e pSearch randomly picks the semantic vector of an
existing document for node bootstrapping

Experiment Setup

e pSearch Prototype
- Cornell’s SMART system implements VSM

- extend it with implementations of LSI, CAN, and pLSI
algorithms

e Corpus: Text Retrieval Conference (TREC)
- 528,543 documents from various sources
- total size about 2GB
- 100 queries, topic 351-450

Evaluation Metrics

e Efficiency: nodes visited and data
transmitted during a search

e Efficacy.: compare search results
- pLSI vs. LS|

pLSI vs. LSI
-

AN B
A

Accuracy = x 100%

— Retrieve top 15 documents
- A: documents retrieved by LS|
- B: documents retrieved by pLSI

Performance w.r.t. System Size

Search < 0.2% nodes —

200 Transmit 72KB data
150
100
O |
500 2k 8k 32k 128k

Nodes

Open Issues
-

e Larger corpora
e Efficient variants of LSI/SVD
e Evolution of global statistics

e |Incorporate other IR techniques
- Relevance feedback, Google’'s PageRank

Querying the Internet with PIER

(PIER = Peer-to-peer Information Exchange and Retrieval)

Presented by Zheng Ma
Yale University

Outline
.

e |nroduction

e What is PIER?
— Design Principles

e Implementation
- DHT
— Query Processor

e Performance
e Summary

Introduction
.

e Databases:
- powerful query facilities
- declarative interface
- potential to scale up to few hundred computers

e \What about Internet? If we want well distributed system
that has
- query facilities (SQL)
— fault tolerance
— flexibility

e PIER is a query engine that scales up to thousands of
participating nodes and can work on various data

What is PIER?
<

e Peer-to-Peer Information Exchange and Retrieval

e Query engine that runs on top of P2P network

— step to the distributed query processing at a larger scale
— way for massive distribution: querying heterogeneous
data

e Architecture meets traditional database query
processing with recent peer-to-peer technologies

Design Principles
-

e Relaxed Consistency
— adjusts availability of the system
e Organic Scaling
- No need in a priori allocation of a data center

e Natural Habitats for Data
- No DB schemas, file system or perhaps a live feed

e Standard Schemas via Grassroots Software
—- widespread programs provide de facto standards.

Outline
.

e [ntroduction

e What is PIER?
— Design Principles

e Implementation
- DHT
— Query Engine
e Scalability
e Summary

Implementation — DHT
c__

(Various

User Applications

) Apps

v

Query
Optimizer Core

y

Relational

Catalog
Manage

PIER

Execution
r Engine

» Provider

F

Storage
Manager

-

A

Overlay
Routing

DHT

<< based on CAN

DHT structure:

* routing layer

» storage manager
e provider

DHT — Routing & Storage
0

Routing layer Storage Manager

maps a key into the IP address of stores and retrieves records,
the node currently responsible for which consist of key/value
that key. Provides exact lookups, pairs. Keys are used to
callbacks higher levels when the locate items and can be
set of keys has changed any data type or structure

supported

Routing layer API
lookup (key) =2 ipaddr Storage Manager API
Jjoin (landmarkNode) store (key, 1tem)
leave () retrieve (key)—=2> item

locationMapChange remove (key)

DHT — Provider (1)

Provider ties routing and storage manager layers

and provides an interface
St ¢
e Each object in the DHT has a namespace, Ma‘?fZ‘S’Zr

resourcelD and instancelD
e DHT key = hash(namespace,resourcelD)

e namespace - application or group of object, table
e resourcelD — what is object, primary key or any attribute

e instancelD — integer, to separate items with the same
namespace and resourcelD

e CAN'’s mapping of resourcelD/Object is equivalent to an
Index

» Provider

Overlay
Routing

DHT — Provider (2)
S

Provider API

get (namespace, resourcelD) =2 item
put (namespace, resourcelD, item, lifetime)

renew (namespace, resourcelD, 1nstancelD, lifetime)
- bool

multicast (namespace, resourcelD, 1tem)

lscan (namespace) =2 items

newData (namespace, item) riD3
item
Table R (namespace) Node R1
(1..n) tuples / (1..n) riD2
(n+1..m) tuples | Node R2 riD1 | [item
(n+1..m) item

Implementation — Query Engine

| Various User Applications) Apps
Query
Ophifhizer Core PIER
Relational

Catalog ExeCL_Jtion
r ‘Englne

Manage

~

Storage ¢
Manager

> Provider

.

-

Overlay
Routing

DHT

<< quel"y
processor

QP Structure:
= core engine

= query
optimizer

= catalog
manager

Query Processor
S

e How it works?

— performs selection, projection, joins, grouping, aggregation
— simultaneous execution of multiple operators pipelined together

— results are produced and queued as quick as possible

e How it modifies data?

— insert, update and delete different items via DHT interface

e How it selects data to process?

— dilated-reachable snapshot — data, published by reachable nodes at
the query arrival time

Query Processor — Joins (1)

Symmetric hash join

At each site

e (Scan) lscan Ny and Ng

e (Rehash) put into N, a copy N
of each eligible tuple

e (Listen) use newData to see %
the rehashed tuples in N,

e (Compute) join the tuples as
they arrive to N,

Data

*Basic, uses a lot of network
resources

Query Processor — Joins (2)

Fetch matches
N At each site
R
CCD> N

e (Scan) lscan (Ng)

~ SR e (Get) for each
NSJ suitable R tuple get
S}ﬁ\/j,_ for the matching S
T Join(R,S, R.sick= S.id) tuple
/\/\/449\ e When S tuples
N arrive at R, join them
N, X e Pass results

N |

o B *Retrieve only tuples
that matched

Performance: Join Algorithms

Average network traffic

1 ——
16000 - ! ! ! SHJ FM
14000 A 5 5 5 o —
i - —il— | i
12000 ,/ﬂ— ; | | ;
oo
8000 A | | | | R+S=25GB
6000 - | | | i n=m= 1024
| | | i inbound capacity =
4000 A : : : 5 . 10 Mbps
i i i i hop latency =100
2000 - : : : i i ms
0 | | . | . | |
0 20 40 60 80 100

Selectivity of predicat on relation S

Query Processor — Join rewriting
.

Symmetric semi-join

e (Project) both Rand Sto
their resourcelDs and join
keys

e (Small rehash) Perform a
SHJ on the two projections

e (Compute) Send results into
FM join for each of the tables

*Minimizes initial
communication

Bloom joins

e (Scan) create Bloom Filter for a
fragment of relation

e (Put) Publish filter for R, S
e (Multicast) Distribute filters

e (Rehash) only tuples matched
the filter

e (Compute) Run SHJ

*Reduces rehashing

Performance: Join Algorithms
. 0000000000

Average network traffic

—-SHJ - FM SSJ =+ BF

‘

! I R+S=25GB
6000 - 5 : h=m=1024
. | | inbound capacity =
4000 1 5 5 : " 10 Mbps
| i i i hop latency =100
2000 A i | } : | ms
0 & . | : | . | : .' . |
0 20 40 60 80 100

Selectivity of predicat on relation S

Outline
.

e [ntroduction

e What is PIER?
— Design Principles

e Implementation
- DHT
— Query Processor

e Scalability
e Summary

Scalability Simulation

g m 1000 — ———rr ———rer
Condltlons 1 Computation Node ——
e |R|=10|S] [16 Computation Nodes &]
e Constants produce ' A A]

selectivity of 50% too |

Query: g |

SELECT £ 10F P4 L

R.key, S.key, E ; %%__ e
Rpad = F //,// BK;(:EJ_‘ =

WHERE R.n1 = S.key : I i
AND R.n2 > const1 |
AND S.n2 > const2 .

PO T R i i aaal i o gl i PR T T A
1 10 100 1000 10000

AND f(R.n3,5.n3) > Number of Nodes

const3

Experimental Results
0

100

EqUipment: . . S N Real Nodes —+— E
e cluster of 64 PCs
e 1 Gbps network

Result:

e Time to receive 30-th
result tuple
practically remains
unchanged as both
the size and load are
scaled up.

\\\ -~ --"----
10 N~
n) -
R

Time to 30th Tuple (secs)

i i i i i i il i i i i i i i
1 10 100
MNumber of Nodes

Summary
-

e PIER is a structured query system intended to run at
the big scale

e PIER queries data that preexists in the wide area

e DHT is a core scalability mechanism for indexing,
routing and query state management

e Big front of future work:
- Caching
— Query optimization
- Security

Backup Slides
.

HitList
<

“Hitlist” is defined as list of occurrences of a
particular word in a particular document
including additional meta info:

- position of word in doc

- font size

- capitalization

- descriptor type, e.q. title, anchor, etc.

Inverted Index
.

e Contains the same barrels as the Forward
Index, except they have been sorted by
doclID’s

e All words are pointed to by the Lexicon

e Contains pointers to a doclist containing all
doclD’s with their corresponding hit lists.

- The barrels are duplicated
- For speed in single word searches

Specific Design Goals
-

e Deliver results that have very high precision even at
the expense of recall

e Make search engine technology transparent, i.e.
advertising shouldn’t bias results

e Bring search engine technology into academic realm in
order to support novel research activities on large web
data sets

e Make system easy to use for most people, e.g. users
shouldn’t have to specify more than a couple words

Crawling the Web
-

e Distributed Crawling system:
- UrlServer
— Multiple crawlers

e |ssues:
— DNS bottleneck requires cached DNS
- Extremely complex and heterogeneous Web

e Systems must be very robust

Why do we need d?
S

e |n the real world virtually all web graphs are not
connected, i.e. they have dead-ends, islands,

etc.

e If we don’'t have d we get “ranks leaks”
for graphs that are not connected, i.e. leads to
numerical instability

Indexing the Web
-

e Parsing so many different documents is very
difficult

e Indexing documents requires simultaneous
access to the Lexicon

— Creates a problem for words that aren’t already in
the Lexicon

e Sorting is done on multiple machines, each
working on a different barrel

Document Index
<]

e Keeps information about each document
e Sequentially stored, ordered by DoclD
e Contains:
— Current document status
— Pointer into the repository
— Document checksum
— File for converting URLs to DoclID's
e If the page has been crawled, it contains:
— A pointer to Doclnfo -> URL and title
e |[f the page has not been crawled, it contains:
— A pointer to the URLLIist -> Just the URL
e This data structure requires only 1 disk seek for each search

Lexicon
o«

e The lexicon is stored in memory and contains:
— A null separated word list

- A hash table of pointers to these words in the
barrels (for the Inverted Index)

e An important feature of the Lexicon is that it fits
entirely into memory

Storage Requirements

At the time of publication, Google had the following
@ _statistical breakdown for storage requirements:

Storage Statistics (Yalues in GB)

Links Database, 3.9, 4%

Cocument Index, 9.7, 3%

Lexicon, 0,293, 0%

Compressed Repository,
53.5, 49%

Imverted Index, 41.3, 38%

Single Word Query Ranking

Hitlist is retrieved for single word

Each hit can be one of several types: title, anchor, URL, large font,
small font, etc.

Each hit type is assigned its own weight

Type-weights make up vector of weights

of hits of each type is counted to form count vector

Dot product of two vectors is used to compute IR score

IR score is combined with PageRank to compute final rank

Multi-word Query Ranking
-

e Similar to single-word ranking except now must
analyze proximity
e Hits occurring closer together are weighted higher

e Each proximity relation is classified into 1 of 10 values
ranging from a phrase match to “not even close”

e Counts are computed for every type of hit and
proximity

Forward Index
«

e Stored in barrels containing:
- A range of WordID's
- The DoclD of a pages containing these words
- Alist of WordID's followed by corresponding hit lists

e Actual WordID's are not stored in the barrels;
instead, the difference between the word and
the minimum of the barrel is stored
— This requires only 24 bits for each WordID
— Allowing 8 bits to hold the hit list length

References
o

1.

Sergey Brin and Lawrence Page. “The

Anatomy of a Large-Scale Hypertextual Web
Search Engine”. WWWY7 / Computer
Networks 30(1-7): 107-117 (1998)

nttp://searchenginewatch.com/
nttp://www.searchengineshowdown.com/
nttp://www.robotstxt.org/wc/exclusion.html

