Privacy Cognizant Information Systems

Rakesh Agrawal
IBM Almaden Research Center

Jt. work with Srikant, Kiernan, Xu \& Evfimievski

Thesis

f There is increasing need to build information systems that
f protect the privacy and ownership of information
f do not impede the flow of information
f Cross-fertilization of ideas from the security and database research communities can lead to the development of innovative solutions.

Outline

- Motivation
- Privacy Preserving Data Mining
- Privacy Aware Data Management
- Information Sharing Across Private Databases
- Conclusions

Drivers

- Policies and Legislations
- U.S. and international regulations
- Legal proceedings against businesses
- Consumer Concerns
- Consumer privacy apprehensions continue to plague the Web ... these fears will hold back roughly $\$ 15$ billion in eCommerce revenue." Forrester Research, 2001
- Most consumers are "privacy pragmatists." Westin Surveys
- Moral Imperative
- The right to privacy: the most cherished of human freedom -- Warren \& Brandeis, 1890

Outline

- Motivation
- Privacy Preserving Data Mining
- Privacy Aware Data Management
- Information Sharing Across Private Databases
- Conclusions

Data Mining and Privacy

- The primary task in data mining:
- development of models about aggregated data.
- Can we develop accurate models, while protecting the privacy of individual records?

Setting

- Application scenario: A central server interested in building a data mining model using data obtained from a large number of clients, while preserving their privacy
- Web-commerce, e.g. recommendation service
- Desiderata:
- Must not slow-down the speed of client interaction
- Must scale to very large number of clients
- During the application phase
- Ship model to the clients
- Use oblivious computations

New Order:

New Order: Randomization to Protect Privacy

Recommendation Service

Bob 45
 60,000
 B. Spears baseball
 cnn

New Order:

 RandomizationProtects Privacy

Recommendation

 Service

Mining Algorithm

Data Mining Model
42
85,000
B. Marley,
camping,
microsoft

Reconstruction Problem (Numeric Data)

- Original values $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$
- from probability distribution X (unknown)
- To hide these values, we use $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}$
- from probability distribution Y
- Given
$-x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}$
- the probability distribution of Y

Estimate the probability distribution of X .

Reconstruction Algorithm

$f_{x}{ }^{0}:=$ Uniform distribution
j:=0
repeat

$$
\begin{aligned}
& \text { peat } \\
& \qquad \begin{array}{c}
\mathrm{f}_{\mathrm{X}}^{\mathrm{j}+1}(\mathrm{a}):= \\
\mathrm{j}:=\mathrm{j}+1
\end{array} \sum_{i=1}^{n} \frac{f_{Y}\left(\left(x_{i}+y_{i}\right)-a\right) f_{X}^{j}(a)}{\int_{-\infty}^{\infty} f_{Y}\left(\left(x_{i}+y_{i}\right)-a\right) f_{X}^{j}(a)}
\end{aligned}
$$

Bayes' Rule
until (stopping criterion met)
(R. Agrawal \& R. Srikant, SIGMOD 2000)

- Converges to maximum likelihood estimate.
- D. Agrawal \& C.C. Aggarwal, PODS 2001.

Works Well

Decision Tree Example

Age	Salary	Repeat Visitor?
23	50 K	Repeat
17	30 K	Repeat
43	40 K	Repeat
68	50 K	Single
32	70 K	Single
20	20 K	Repeat

Algorithms

- Global
- Reconstruct for each attribute once at the beginning
- By Class
- For each attribute, first split by class, then reconstruct separately for each class.
- Local
- Reconstruct at each node

See SIGMOD 2000 paper for details.

Experimental Methodology

- Compare accuracy against
- Original: unperturbed data without randomization.
- Randomized: perturbed data but without making any corrections for randomization.
- Test data not randomized.
- Synthetic benchmark from [AGI+92].
- Training set of 100,000 records, split equally between the two classes.

Decision Tree Experiments

100\% Randomization Level

Accuracy vs. Randomization

Fn 3

Original
Randomized
Reconstructed
-ـ

More on Randomization

- Privacy-Preserving Association Rule Mining Over Categorical Data
- Rizvi \& Haritsa [VLDB 02]
- Evfimievski, Srikant, Agrawal, \& Gehrke [KDD-02]
- Privacy Breach Control: Probabilistic limits on what one can infer with access to the randomized data as well as mining results
- Evfimievski, Srikant, Agrawal, \& Gehrke [KDD-02]
- Evfimievski, Gehrke \& Srikant [PODS-03]

Related Work:

Private Distributed ID3

- How to build a decision-tree classifier on the union of two private databases (Lindell \& Pinkas [Crypto 2000])
- Basic Idea:
\& Find attribute with highest information gain privately
* Independently split on this attribute and recurse
- Selecting the Split Attribute
\& Given v1 known to DB1 and v2 known to DB2, compute (v1 + v2) $\log (\mathrm{v} 1+\mathrm{v} 2)$ and output random shares of the answer
* Given random shares, use Yao's protocol [FOCS 84] to compute information gain.
- Trade-off
+ Accuracy
- Performance \& scaling

Related Work: Purdue Toolkit

- Partitioned databases (horizontally + vertically)
- Secure Building Blocks
- Algorithms (using building blocks):
- Association rules
- EM Clustering
- C. Clifton et al. Tools for Privacy Preserving Data Mining. SIGKDD Explorations 2003.

Related Work: Statistical Databases

- Provide statistical information without compromising sensitive information about individuals (AW89, Sho82)
- Techniques
- Query Restriction
- Data Perturbation
- Negative Results: cannot give high quality statistics and simultaneously prevent partial disclosure of individual information [AW89]

Summary

- Promising technical direction \& results
- Much more needs to be done, e.g.
- Trade off between the amount of privacy breach and performance
- Examination of other approaches (e.g. randomization based on swapping)

Outline

- Motivation
- Privacy Preserving Data Mining
- Privacy Aware Data Management
- Information Sharing Across Private Databases
- Conclusions

Hippocratic Databases

- Hippocratic Oath, 8 (circa 400 BC)
- What I may see or hear in the course of treatment ... I will keep to myself.
- What if the database systems were to embrace the Hippocratic Oath?
- Architecture derived from privacy legislations.
- US (FIPA, 1974), Europe (OECD , 1980), Canada (1995), Australia (2000), Japan (2003)
- Agrawal, Kiernan, Srikant \& Xu: VLDB 2002.

Architectural Principles

- Purpose Specification

Associate with data the purposes for collection

- Consent

Obtain donor's consent on the purposes

- Limited Collection

Collect minimum necessary data

- Limited Use

Run only queries that are consistent with the purposes

- Limited Disclosure Do not release data without donor's consent
- Limited Retention

Do not retain data beyond necessary

- Accuracy

Keep data accurate and up-todate

- Safety

Protect against theft and other misappropriations

- Openness

Allow donor access to data about the donor

- Compliance

Verifiable compliance with the above principles

Architecture: Policy

Privacy Policies Table

Purpose	Table	Attribute	External- recipients	Authorized- users	Retention
purchase	customer	name	\{delivery, credit-card\}	\{shipping, charge\}	1 month
purchase	customer	email	empty	\{shipping\}	1 month
register	customer	name	empty	\{registration\}	3 years
register	customer	email	empty	\{registration\}	3 years
recommend ations	order	book	empty	\{mining\}	10 years

Architecture: Data Collection

Architecture: Data Collection

Architecture: Queries

Architecture: Queries

Architecture: Other

Other

Architecture

Related Work:
 Statistical \& Secure Databases

- Statistical Databases
- Provide statistical information (sum, count, etc.) without compromising sensitive information about individuals, [AW89]
- Multilevel Secure Databases
- Multilevel relations, e.g., records tagged "secret", "confidential", or "unclassified", e.g. [JS91]
- Need to protect privacy in transactional databases that support daily operations.
- Cannot restrict queries to statistical queries.
- Cannot tag all the records "top secret".

Some Interesting Problems

- Privacy enforcement requires cell-level decisions (which may be different for different queries)
- How to minimize the cost of privacy checking?
- Encryption to avoid data theft
- How to index encrypted data for range queries?
- Intrusive queries from authorized users
- Query intrusion detection?
- Identifying unnecessary data collection
- Assets info needed only if salary is below a threshold
- Queries only ask "Salary > threshold" for rent application
- Forgetting data after the purpose is fulfilled
- Databases designed not to lose data
- Interaction with compliance

Solutions must scale to database-size problems!

Outline

- Motivation
- Privacy Preserving Data Mining
- Privacy Aware Data Management
- Information Sharing Across Private Databases
- Conclusions

Today's Information Sharing Systems

Assumption: Information in each database can be freely shared.

Minimal Necessary Information Sharing

- Compute queries across databases so that no more information than necessary is revealed (without using a trusted third party).
- Need is driven by several trends:
- End-to-end integration of information systems across companies.
- Simultaneously compete and cooperate.
- Security: need-to-know information sharing
- Agrawal, Evfimievski \& Srikant: SIGMOD 2003.

Selective Document Sharing

- R is shopping for technology.
- S has intellectual property it may want to license.
- First find the specific technologies where there is a match, and then reveal further information

Example 2: Govt. agencies sharing information on a need-to-know basis.

Medical Research

- Validate hypothesis between adverse reaction to a drug and a specific DNA sequence.
- Researchers should not learn anything beyond 4
 counts:

	Adverse Reaction	No Adv. Reaction
Sequence Present	$?$	$?$
Sequence Absent	$?$	$?$

Minimal Necessary Sharing

Count (R S)
$>R \& S$ do not learn anything except that the result is 2 .

Problem Statement: Minimal Sharing

- Given:
- Two parties (honest-but-curious): R (receiver) and S (sender)
- Query Q spanning the tables R and S
- Additional (pre-specified) categories of information I
- Compute the answer to Q and return it to R without revealing any additional information to either party, except for the information contained in I
- For intersection, intersection size \& equijoin, I = \{ |R| , |S| \}
- For equijoin size, I also includes the distribution of duplicates \& some subset of information in R 目 S

A Possible Approach

- Secure Multi-Party Computation
- Given two parties with inputs x and y, compute $f(x, y)$ such that the parties learn only $f(x, y)$ and nothing else.
- Can be solved by building a combinatorial circuit, and simulating that circuit [Yao86].
- Prohibitive cost for database-size problems.
- Intersection of two relations of a million records each would require 144 days

Intersection Protocol: Intuition

- Want to encrypt the value in R and S and compare the encrypted values.
- However, want an encryption function such that it can only be jointly computed by R and S, not separately.

Commutative Encryption

Commutative encryption F is a computable function
f : Key F X Dom F -> Dom F, satisfying:

- For all e, e' Ml Key F, $f_{e} o f_{e^{\prime}}=f_{e^{\prime}}$ of f_{e}
(The result of encryption with two different keys is the same, irrespective of the order of encryption)
- Each f_{e} is a bjjection.
(Two different values will have different encrypted values)
- The distribution of $\left\langle x, f_{e}(x), y, f_{e}(y)\right\rangle$ is indistinguishable from the distribution of $<x, f_{e}(x), y, z>; x, y, z \ell_{r}$ Dom F and e M_{r} Key F. (Given a value x and its encryption $f_{e}(x)$, for a new value y, we cannot distinguish between $f_{e}(y)$ and a random value z. Thus we cannot encrypt y nor decrypt $f_{e}(y)$.)

Example Commutative Encryption

- $f_{e}(x)=x^{e} \bmod p$
where
- p: safe prime number, i.e., both p and $q=(p-1) / 2$ are primes
- encryption key e Ml 1, 2, ..., q-1
- Dom F: all quadratic residues modulo p
- Commutativity: powers commute $\left(x^{d} \bmod p\right)^{e} \bmod p=x^{d e} \bmod p=\left(x^{e} \bmod p\right)^{d} \bmod p$
- Indistinguishability follows from Decisional DiffieHellman Hypothesis (DDH)

Intersection Protocol

S

$\mathrm{f}_{\mathrm{s}}(\mathrm{S})$

Shorthand for $\left\{\mathrm{f}_{\mathrm{s}}(\mathrm{x}) \mid \mathrm{x}\right.$ M| S$\}$

Intersection Protocol

Intersection Protocol

Intersection Size Protocol

Equi Join and Join Size

- See Sigmod03 paper
- Also gives the cost analysis of protocols

Related Work

- [NP99]: Protocols for list intersection problem
- Oblivious evaluation of n polynomials of degree n each.
- Oblivious evaluation of n^{2} polynomials.
- [HFH99]: find people with common preferences, without revealing the preferences.
- Intersection protocols are similar to ours, but do not provide proofs of security.

Challenges

- Models of minimal disclosure and corresponding protocols for
- other database operations
- combination of operations
- Faster protocols
- Tradeoff between efficiency and
- the additional information disclosed
- approximation

Closing Thoughts

- Solutions to complex problems such as privacy require a mix of legislations, societal norms, market forces \& technology
- By advancing technology, we can change the mix and improve the overall quality of the solution
- Gold mine of challenging research problems (besides being useful)!

References

http://www.almaden.ibm.com/software/quest/

- M. Bawa, R. Bayardo, R. Agrawal. Privacy-preserving indexing of Documents on the Network. 29th Int'l Conf. on Very Large Databases (VLDB), Berlin, Sept. 2003.
- R. Agrawal, A. Evfimievski, R. Srikant. Information Sharing Across Private Databases. ACM Int'l Conf. On Management of Data (SIGMOD), San Diego, California, June 2003.
- A. Evfimievski, J. Gehrke, R. Srikant. Liming Privacy Breaches in Privacy Preserving Data Mining. PODS, San Diego, California, June 2003.
- R. Agrawal, J. Kiernan, R. Srikant, Y. Xu. An Xpath Based Preference Language for P3P. 12th Intil World Wide Web Conf. (WWW), Budapest, Hungary, May 2003.
- R. Agrawal, J. Kiernan, R. Srikant, Y. Xu. Implementing P3P Using Database Technology. 19th Int'I Conf.on Data Engineering(ICDE), Bangalore, India, March 2003.
- R. Agrawal, J. Kiernan, R. Srikant, Y. Xu. Server Centric P3P. W3C Workshop on the Future of P3P, Dulles, Virginia, Nov. 2002.
- R. Agrawal, J. Kiernan, R. Srikant, Y. Xu. Hippocratic Databases. 28th Int'I Conf. on Very Large Databases (VLDB), Hong Kong, August 2002.
- R. Agrawal, J. Kiernan. Watermarking Relational Databases. 28th Int'I Conf. on Very Large Databases (VLDB), Hong Kong, August 2002. Expanded version in VLDB Journal 2003.
- A. Evfimievski, R. Srikant, R. Agrawal, J. Gehrke. Mining Association Rules Over Privacy Preserving Data. 8th Int'l Conf. on Knowledge Discovery in Databases and Data Mining (KDD), Edmonton, Canada, July 2002.
- R. Agrawal, R. Srikant. Privacy Preserving Data Mining. ACM Int'I Conf. On Management of Data (SIGMOD), Dallas, Texas, May 2000.

