
1500 Archers on a 28.8: Network Programming in Age
of Empires and Beyond

Paul Bettner
pbettner@ensemblestudios.com

Mark Terrano
mterrano@ensemblestudios.com

(Presented at GDC2001 - 03/22/2001 2:30p)

Introduction

This paper explains the design architecture, implementation, and some of the
lessons learned creating the multi-player (networking) code for the Age of
Empires I & II games; and discusses the current and future networking
approaches used by Ensemble Studios in its game engines.

Age of Empires multi-player - Design Goals

When the multi-player code for Age of Empires ™ was started in early 1996 there
were some very specific goals that had to be met to deliver the kind of game
experience we had in mind.

• Sweeping epic historical battles with a great variety of units
• Support for 8 players in multi-player
• Insure a smooth simulation over LAN, modem-to-modem, and the Internet
• Support a target platform of: 16Mb Pentium 90 with a 28.8 modem
• The communications system had to work with existing (Genie) engine
• Target consistent frame rate of 15 fps on the minimum machine config

The Genie Engine was already running and the game simulation was shaping up
into a compelling experience in single player. The Genie Engine is a 2D single-
threaded (game loop) engine. Sprites are rendered in 256 colors in a tile-based
world. Randomly-generated maps were filled with thousands of objects, from
trees that could be chopped down to leaping gazelles. The rough breakdown
(post optimization) of processing tasks for the engine was: 30% graphic
rendering, 30% AI and Pathing, and 30% running the simulation & maintenance.

At a fairly early stage, the engine was reasonably stable - and multi-player
communications needed to work with the existing code without substantial
recoding of the existing (working) architecture.

To complicate matters further, the time to complete each simulation step varied
greatly: the rendering time changed if the user was watching units, scrolling, or
sitting over unexplored terrain, and large paths or strategic planning by the AI
made the game turn fluctuate fairly wildly by as much as 200 msec.

A few quick calculations would show that passing even a small set of data about
the units, and attempting to update it in real time would severely limit the number
of units and objects we could have interacting with the player. Just passing X &
Y coordinates, status, action, facing and damage would have limited us to 250
moving units in the game at the most.

We wanted to devastate a Greek city with catapults, archers, and warriors on one
side while it was being besieged from the sea with triremes. Clearly, another
approach was needed.

Simultaneous Simulations

Rather than passing the status of each unit in the game, the expectation was to
run the exact same simulation on each machine, passing each an identical set of
commands that were issued by the users at the same time. The PCs would
basically synchronize their game watches in best war-movie tradition, allow
players to issue commands, and then execute in exactly the same way at the
same time and have identical games.

This tricky synchronization was difficult to get running initially, but did yield some
surprising benefits in other areas.

Improving on the basic model

At the easiest conceptual level, achieving a simultaneous simulation seems fairly
straightforward. For some games, using lock-step simulations and fixed game
timings might even be feasible.

Since the problem of moving hundreds or thousands of objects simultaneously
was taken care of by this approach - the solution still had to be viable on the
Internet with latency swings of 20-1000 milliseconds, and handle changes in
frame processing time.

Sending out the player commands, acknowledging all messages, and then
processing them before going on to the next turn was going to be a gameplay
nightmare of stop-start or slow command turnover. A scheme to continue
processing the game while waiting for communications to happen in the
background was needed.

Mark used a system of tagging
commands to be executed two
‘communications turns’ in the
future (Comm. turns were
separated in AoE from actual
rendering frames).

So commands issued during turn 1000 would be scheduled for execution during
turn 1002. On turn 1001 commands that were issued on turn 0999 would be
executed. This allowed messages to be received, acknowledged, and ready to
process while the game was still animating and running the simulation.

Turns were typically 200 msec in
length, with commands being sent
out during the turn. After 200
msec, the turn was cut off and the
next turn was started. At any
point during the game, commands
were being processed for one
turn, received and stored for the
next turn, and sent out for
execution two turns in the future.

‘Speed Control’

Since the simulations must always
have the exact same input, the
game can really only run as fast
as the slowest machine can
process the communications,
render the turn, and send out new
commands. Speed Control is
what we called the system to
change the length of the turn to
keep the animation and gameplay
smooth over changing conditions
in communications lag and
processing speed.

There are two factors that make
the gameplay feel ‘laggy’: If one machine’s frame rate drops (or is lower than the
rest) the other machines will process their commands, render all of the allocated
time, and end up waiting for the next turn - even tiny stops are immediately
noticeable. Communications lag - due to Internet latency and lost data packets
would also stop the game as the players waited around for enough data to
complete the turn.

AoE Turn Processing

Yes

No

Yes

No

Accept player
commands

Has turn-time
elapsed?

TX 'Done'
message w /

 timing & count

Analyze game &
ping speed

RX
'Done' msgs for all

players?

Advance turn
counter

Process drop &
timeout checks

Do game turn
(render, etc.)

Adjust timing for
new turn

Increment
'command turn'

Each client calculated a frame rate that it thought could be consistently
maintained by averaging the processing time over a number of frames. Since
this varied over the course of the game with the visible line-of-sight, number of
units, map size and other factors - it was sent with each ‘Turn Done’ message.

Each client would also measure a round trip ‘ping time’ periodically from it to the
other clients. It would also send the longest average ping time it was seeing to
any of the clients with the ‘Turn Done’ message. (Total of 2 bytes was used for
speed control)

Each turn the designated host would analyze the ‘done’ messages, figure out a
target frame rate and adjustment for Internet latency. The host would then send
out a new frame rate and communications turn length to be used. The following
diagrams show how the communications turn was broken up for the different
conditions.

A Single Communication Turn

Frame Frame FrameProcess all messages

Communications turn (200 msec) - scaled to 'round-trip ping' time estimates

50 msec
Frame - scaled to rendering speed

50 msec 50 msec 50 msec 20 fps

High Internet Latency with normal machine performance

Frame FrameProcess all
messages

Communications turn (1000 msec) - scaled to 'round-trip ping' time estimates

50 msec 20 frames, 50 msec each

Frame Frame Frame Frame Frame FrameFrame

20 fps

Poor machine performance with normal latency

FrameProcess all messages

100 msec 100 msec
Frame - scaled to rendering speed

Communications turn (200 msec) - scaled to 'round-trip ping' time estimates

10 fps

The ‘communications turn’ which was roughly the round-trip ping time for a
message, was divided up into the number of simulation frames that on average
could be done by the slowest machine in that period.

The communications turn length was weighted so it would quickly rise to handle
Internet latency changes, and slowly settle back down to the best average speed
that could be consistently maintained. The game would tend to pause or slow
only at the very worst spikes- command latency would go up but would stay
smooth (adjusting only a few milliseconds per turn) as the game adjusted back
down to best possible speed. This gave the smoothest play experience possible
while still adjusting to changing conditions.

Guaranteed Delivery

At the network layer UDP was used, with command ordering, drop detection and
resending being handled by each client. Each message used a couple of bytes
to identify the turn that execution was scheduled and the sequence number for
the message. If a message was received for a past turn, it was discarded, and
incoming messages were stored for execution. Because of the nature of UDP,
Mark’s assumption for message receipt was that “When in doubt , assume it
dropped”. If messages were received out of order, the receiver immediately sent
out re-send requests for the dropped messages. If an acknowledgement was
later than predicted, the sender would just resend without being asked
anticipating the message had been dropped.

Hidden Benefits

Because the game’s outcome depended on all of the users executing exactly the
same simulation, it was extremely difficult to hack a client (or client
communication stream) and cheat. Any simulation that ran differently was
tagged as ‘out of sync’ and the game stopped. Cheating to reveal information
locally was still possible, but these few leaks were relatively easy to secure in
subsequent patches and revisions. Security was a huge win.

Hidden Problems

At first take it might seem that getting two pieces of identical code to run the
same should be fairly easy and straightforward - not so. The Microsoft product
manager - Tim Znamenacek told Mark early on “In every project, there is one
stubborn bug that goes all the way to the wire - I think out-of-sync is going to be
it” - he was right. The difficulty with finding out-of-sync errors is that very subtle
differences would multiply over time. A deer slightly out of alignment when the
random map was created would forage slightly differently - and minutes later a
villager would path a tiny bit off, or miss with his spear and take home no meat.
So what showed up as a checksum difference as different food amounts had a
cause that was sometimes puzzling to trace back to the original cause.

As much as we check-summed the world, the objects, the Pathfinding, targeting
and every other system - it seemed that there was always one more thing that
slipped just under the radar. Giant (50Mb) message traces and world object

dumps to sift through made the problem even more difficult. Part of the difficulty
was conceptual - programmers were not used to having to write code that used
the same number of calls to random within the simulation (yes, the random
numbers were seeded and synchronized as well).

Lessons Learned

A few key lessons were learned in the development of the networking for Age of
Empires that are applicable to development of any game’s multi-player system.

Know your user

Studying the user is key to understanding what their expectations are for multi-
player performance, perceived lag, and command latency. Each game genre is
different, and you need to understand what is right for your specific gameplay
and controls.

Early in the development process Mark sat down with the Lead Designer and
prototyped communications latency (this was something that was revisited
throughout the development process). Since the single-player game was
running, it was easy to simulate different ranges of command latency and get
player feedback on when it felt right, sluggish, jerky, or just horrible.

For RTS games, 250 milliseconds of command latency was not even noticed -
between 250 and 500 msec was very playable, and beyond 500 it started to be
noticeable. It was also interesting to note that players developed a ‘game pace’
and a mental expectation of the lag between when they clicked and when their
unit responded. A consistent slower response was better than alternating
between fast and slow command latency (say between 80 and 500 msec) - in
that case a consistent 500 msec command latency was playable, but one that
varied was considered ‘jerky’ and hard to use.

In real terms this directed a lot of the programming efforts at smoothness - it was
better to pick a longer turn length and be certain that everything stayed smooth
and consistent than to run as quickly as possible with occasional slow-downs.
Any changes to speed had to be gradual and in as small increments as possible.

We also metered the users demands on the system - they would typically issue
commands (move, attack, chop trees) averaging about every 1.5-2 seconds,
with occasional spikes of 3-4 commands per second during heated battles.
Since our game built to crescendos of frantic activity the heaviest
communications demands were middle and late game.

When you take the time to study your user behavior you’ll notice other things
about how they play the game that can help your network play. In AoE, clicking
repeatedly when the users were excitedly attacking (clik-lik-lik-lik-lik - go go go)

was causing huge spikes in the number of commands issued per second - and if
they were pathing a large group of units - huge spikes in the network demand as
well. A simple filter to discard repeat commands at the same location drastically
reduced the impact of this behavior.

In summary, goals of user observation will let you

• Know the latency expectations of the user for your game
• Prototype multi-player aspects of play early
• Watch for behavior that hurts multi-player performance

Metering is King

You will discover surprising things about how your communications system is
working if you put in metering early, make it readable by testers, and use it to
understand what is happening under the hood of your networking engine.

Lesson: Some of the problems with AoE communication happened when Mark
took the metering out too early, and did not re-verify message (length and
frequency) levels after the final code was in. Undetected things like occasional
AI race conditions, difficult-to-compute paths, and poorly structured command
packets could cause huge performance problems in an otherwise well tuned
system.

Have your system notify testers and developers when it seems like it is
exceeding boundary conditions - programmers and testers will notice during
development which tasks are stressing the system and let you know early
enough to do something about it.

Take the time to educate your testers in how your communications system
works, and expose and explain the summary metering to them - you might be
surprised what things they notice when the networking code inevitably
encounters strange failures.

In summary, your metering should:

• Be human readable and understandable by testers
• Reveal bottlenecks, slowdowns, and problems
• Be low impact and kept running all the time

Educating the Developers

Getting programmers who are used to developing single-player applications to
start thinking about a detachment between the command being issued, received,
and being processed is tricky. It is easy to forget that you are requesting
something that might not happen, or might happen seconds after you originally
issue the command. Commands have to be checked for validity both on send
and receive.

With the synchronous model, programmers also had to be aware that the code
must not depend on any local factor (such as having free time, special hardware,
or different settings) when it was in the simulation. The code path taken on all
machines must match. For example having random terrain sounds inside the
simulation would cause the games to behave differently (saving and re-seeding
the pseudo-random number generator with the last random number took care of
things inside the simulation that we needed to be random but not change the
simulation.

Other lessons

This should be common sense - but If you depend on a 3rd party network (in our
case DirectPlay™) - write an independent test application to verify that when they
say ‘guaranteed delivery’ that the messages get there, that ‘guaranteed packet
order’ truly is, and that the product does not have hidden bottlenecks or strange
behaviors handling the communications for your game.

Be prepared to create simulation applications and stress test simulators. We
ended up with three different minimal test applications, all to isolate and highlight
problems like connection flooding, problems with simultaneous matchmaking
connects, and dropped guaranteed packets.

Test with modems (and if you are lucky - modem simulators) as early as possible
in the process; continue to include modem testing (as painful as it is) throughout
the development process. Because it is hard to isolate problems (is that sudden
performance drop because of the ISP, the Game, the Communications software,
the modem, the matchmaking service, or the other end?) and users really don’t
want to hassle with flaky dialup connections when they have been zipping along
at instant-connection LAN speeds. It is vital that you assure testing is done on
modem connections with the same zeal as the LAN multi-player games.

Improvements for Age of Empires 2

In Age of Kings, we added new multiplayer features such as recorded games, file
transfer, and persistent stat tracking on the Zone. We also refined the multiplayer
systems such as DirectPlay integration and speed control to address bugs and
performance issues that had come up since the release of Age of Empires.

The game recording feature was one of those things that you just happen to
stumble upon as an “I could really use this for debugging” task that ends up as a
full-blown game feature. Recorded games are incredibly popular with the fan
sites as it allows gamers to trade and analyze strategies, view famous battles,
and review the games they played in. As a debugging tool, recorded games are
invaluable. Because our simulation is deterministic, and recorded games are
synchronous in the same way that multiplayer is synchronous, a game recording

gave us a great way of passing around repro cases for bugs because it was
guaranteed to play out the exact same way every time.

Our integration with the matchmaking system on the Zone was limited to
straightforward game launching for Age of Empires. In Age of Kings we extended
this to allow for launch parameter control and persistent stat reporting. While not
a fully inside-out system, we utilized DirectPlay’s lobby launch functionality to
allow the Zone to control certain aspects of the game settings from the pre-game
tables, and “lock” those settings in once the game was actually launched. This
allowed users to better find the games they wanted to play in, because they
could see the settings at the matchmaking level, rather than waiting to launch
into the game setup screen. On the backend we implemented persistent stat
reporting and tracking. We provide a common structure to the Zone, which we fill
out and upload at the end of a game. The data in this structure is used to
populate a number of user ratings and rankings viewable on the Zone’s website.

RTS3 Multiplayer – Goals

RTS3 is the codename for Ensemble’s next generation strategy game. The RTS3
design builds on the successful formula used in the Age of Empires series
games, and calls for a number of new features and multiplayer requirements.

• Builds on the feature-set of Age of Empires 1 and 2 – Design
requirements such as internet play, large diverse maps, and thousands of
controllable units are a given

• 3D – RTS3 is a fully 3D game, with interpolated animation and non-
faceted unit position and rotation

• More players – possible support for more than 8 players
• TCP/IP support – 56k TCP/IP internet connection is our primary target
• Home network support – Support end-user home network configurations

including firewalls and NAT setups

With RTS3, we made the decision early on to go with the same underlying
network model as Age of Empires 1 and 2 – the synchronous simulation –
because the RTS3 design played to the strengths of this architecture in the same
ways. With AOE/AOK, we relied on DirectPlay for transport and session
management services, but for RTS3 we decided to create a core network library,
using only the most basic socket routines as our foundation and building from
there.

The move to a fully 3D world meant that we had to be more sensitive to issues of
frame-rate and overall simulation smoothness in multiplayer. However, it also
meant that our simulation update times and frame-rate would be even more
prone to variation, and that we would be devoting more time overall to rendering.
In the Genie engine, unit rotations were faceted and animations were frame-rate
locked – with BANG! we allowed for arbitrary unit rotation and smooth animation

which meant that the game would be visually much more sensitive to the effects
of latency and see-sawing update rates.

Coming out of development on Age of Kings, we wanted to address those critical
areas where more up-front design and tool-set work would give the biggest
payoff in terms of debugging time. We also realized how important the iterative
play-testing process was to the design of our games, and so bringing the
multiplayer game online as early as possible was high priority.

RTS3 Communications Architecture

An OO Approach

RTS3’s network architecture is strongly object oriented. The requirements of
supporting multiple network configurations really played to the strengths of OO
design in abstracting out the specifics of platform, protocol, and topology behind
a set of common objects and systems.

The protocol specific and topology specific versions of the network objects have
as little code as possible. The bulk of the functionality for these objects has been
isolated in the higher-level parent objects. To implement a new protocol, we
extend only those network objects that need to have protocol specific code (such
as client and session, which need to do some things different based on the
protocol). None of the other objects in the system (such as Channels, TimeSync,

etc) need change because they interface with client and session only through
their high level abstract interfaces.

We also employ the use of aggregation to implement multi-dimensional
derivation (such as with channels, that have an ordered/non-ordered axis of
derivation, as well as a peer/repeater axis of derivation) behind a single generic
interface. Virtual methods are also used for non-intensive notifications, rather
than using callback functions.

Peer topology

The Genie engine supported a peer-to-peer network topology, in which all clients
in the session connect to all the other clients in a star configuration. With RTS3
we have continued the use this topology because of its inherent benefits when
applied to the synchronous simulation model.

The peer topology implies a star configuration of
connected clients in a session. That is, all clients
connect to all other clients. This is the setup that
Age 1 and 2 utilized.

Peer to Peer Strengths

• Reduced latency due to the direct client-
client nature of the system, rather than a
client-server-client roundtrip for messages

• No central point of failure – if a client (even
the host) disconnects from the session, the
game can continue

Peer to Peer Weaknesses

• More active connections in the system (Summation n=0 to k-1 (n)) –
means more potential failure points and latency potential

• Impossible to support some NAT configurations with this approach

Net.lib

Our goal when designing the RTS3 communications architecture was to create a
system that was tailored for strategy games, but at the same time we wanted to
build something that could be used for in-house tools and extended to support
our future games. To meet this goal, we created a layered architecture that
supports game-level objects such as a client and a session, but also supports
lower level transport objects such as a link or a network address.

RTS3 is built upon our next-generation BANG! engine,
which uses a modular architecture with component
libraries such as sound, rendering, and networking.
The network subsystem fits in here as a component
that links with the BANG! engine (as well as various in-
house tools). Our network model is divided up into four
service layers that look almost, but not entirely, unlike
the OSI Network Model, if you applied it to games.

Socks, Level 1

The first level, Socks, provides the fundamental socket level C API, and is
abstracted to provide a common set of low level network routines on a variety of
operating systems. The interface resembles that of Berkley sockets. The Socks
level is primarily used by the higher levels of the network library, and not really
intended to be used by the application code.

Link, Level 2

Level 2, the Link Level, offers
transport layer services. The objects
in this level, such as the Link,
Listener, NetworkAddress, and
Packet represent the useful
elements needed to establish a
connection and send some
messages across it.

Packet – This is our fundamental message structure - an extensible object that
automatically manages its own serialization/de-serialization (via pure virtual
methods) when sent across a link object.

Link – a connection between two network endpoints. This can also be a loopback
link, in which case the endpoints both reside on the same machine. Send and
receive methods on a link know how to operate with Packets and also with void*
data buffers.

Listener – a link generator. This object listens for incoming connections, and
spawns a link when a connection is established.

Data stream – this is an arbitrary meter-able data stream across a given link –
used to implement file transfer, for example.

Net Address – a protocol independent network addressing object

Ping – a simple ping class. Reports on the network latency present in a given
link.

Multiplayer, Level 3

The multiplayer level is the
highest level of objects and
routines available in the net.lib
API. This is the layer that RTS3
interfaces with as it collects
lower level objects, such as
links, into more useful
concepts/objects such as clients
and sessions.

The most interesting objects in the BANG! network library are probably those that
live at the multiplayer level. Here, the API presents a set of objects that the game
level interacts with, and yet we maintain a game-independent approach in the
implementation.

Client – this is the most basic abstraction of a network endpoint. This can be
configured as a remote client (link) or local client (loopback link). Clients are not
created directly, but are instead spawned by a session object.

Session – this is the object responsible for the creation, connection negotiation,
collection and management of clients. The session contains all the other
multiplayer-level objects. To use this object, the application simply calls host() or
join(), giving it either a local address, or remote address respectively and the
session handles the rest. These responsibilities include automatically
creating/deleting clients, notification of session events, and the dispatch of traffic
to the appropriate objects.

Channel and Ordered Channel – this object represents a virtual message
conduit. Messages sent across a channel will be automatically separated out and
received on the corresponding channel object on remote clients. An ordered
channel works with the TimeSync object to guarantee that the ordering of
messages received on that channel will be identical on all clients.

Shared Data – Represents a collection of data shared across all clients. You
extend this object to create specific instances that contain your own data types,
and then use the built in methods to enable the automatic and synchronous
updating of these data elements across the network.

Time Sync – Manages the smooth progression of synchronized network time
across all clients in a session.

Game Communications, Level 4

The communications level is the RTS3 side of things. This is the main collection
of systems through which the game interfaces with the network library, and it
actually lives within the game code itself. The communications layer provides a
plethora of useful utility functions for the creation and management of
multiplayer-level network objects and attempts to boil down the game’s
multiplayer needs into a small easy to use interface.

New Features and Better Tools

Improved sync system

Nobody on the Age of Empires development team would argue the need for the
best sync tools possible. As with any project, when you look back on the
development process during a post-mortem, some areas always stand out as the
ones you spent the most time on, but could have spent much less time on given
more up-front work. Synchronization debugging was probably at the top of this
list as we started development on RTS3.

The RTS3 synchronization tracking system is primarily geared towards rapid
turn-around on sync bugs. Our other priorities in developing it were ease of use
for the developers, the ability to handle an arbitrarily massive amount of sync
data pouring through the system, the ability to totally compile out synchronization
code in a release build, and finally the ability to completely change our test
configuration by toggling some variables rather than requiring a recompile.

Sync checking in RTS3 is done through two sets of macros:

#define syncRandCode(userinfo) gSync->addCodeSync(cRandSync,
userinfo, __FILE__, __LINE__)

#define syncRandData(userinfo, v) gSync->addDataSync(cRandSync,
v, userinfo, __FILE__, __LINE__)

(There is a set of these macros per sync “tag”, where a tag represents a given
system to be synced – in this example, the random number generator,
cRandSync) These macros both take a userinfo string parameter, which is a
name or indication of the specific item being synced. For example, a sync call
might look like:

syncRandCode(“syncing the random seed”, seed);

Synchronous console commands and config variables

Console commands and configuration variables are of immense value to the
development process, as any quake mod creator will attest to. Console
commands are simple function calls, done via a startup configuration file, the
console within the game, or UI hooks, that call into any arbitrary game
functionality. Config variables are named data types, exposed through simple
get, set, define and toggle functions that we use for all sorts of testing and
configuration parameters.

Paul derived multiplayer-enabled versions of our console command and config
variable systems. With these, we are able to easily turn a normal config variable
(such as enableCheating) into a multiplayer config variable by adding a flag to
the config variable’s definition. With this flag enabled, that config variable will
then be passed around in a multiplayer game, and synchronous game decisions
(such as whether to allow free resource tributing) can be based off of the value.
Multiplayer console commands is a similar concept – calls to a multiplayer-
enabled console command are passed around and executed synchronously on
all client machines.

Through the application of these two tools, the developers have a simple way to
use the multiplayer system without writing any lines of code. They can quickly
add new testing tools or configurations, and easily enable them in the network
environment.

Summation

The synchronous simulation, peer to peer model was used successfully in the
Age of Empires series of games. While it is critical to acknowledge the
importance of investing time creating tools and technologies to combat the key
challenges of this approach (such as synchronization and network metering), the
viability of this architecture is proven when applied to the Real Time Strategy
genre. The subsequent improvements we have implemented for RTS3 lead to an
overall multiplayer experience that is virtually indistinguishable from single player
in all but the most horrible network conditions.

Age of Empires logos and box images Copyright © 2000 Microsoft Corporation. Names,
trademarks, and copyrights are the property of the originating companies

