There is a game played by children around the world (more or less) which is called “tic-tac-toe” in the U.S. (“naughts and crosses” in Britain, and many other names in other places). It’s the one where players alternate marking squares in a 3×3 grid, the first player with X’s and the second with O’s. In this position (the numbers are x and y coordinates):

$$
\begin{array}{ccc}
-1 & 0 & 1 \\
1 & X & | \\
--- & --- & --- \\
0 & | & |
--- & --- & --- \\
-1 & | & 0
\end{array}
$$

(The first player has put an X in square $x = -1, y = 1$; their opponent responded by playing in $1, -1$.) X can force a win, by playing in square $-1, -1$. O must respond in $-1, 0$, and after X marks $1, 1$, O cannot block both $0, 1$ and $0, 0$.

Now consider the game played in a $3 \times 3 \times 3$ cube, again centered at the origin. X starts by playing in $-1, 1, 1$, and O plays in $1, -1, -1$. How can X now “do the same thing” they did in the two-dimensional version? What changes would have to be made to Copycat to get it to find an “analogous” move?