
Chord

A scalable peer-to-peer
look-up protocol for

internet applications

by Ion Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, Hari Balakrishnan

Thursday, October 20, 2011

Overview
 Introduction
 The Chord Algorithm

 Construction of the Chord ring
 Localization of nodes
 Node joins and stabilization
 Failure of nodes

 Applications
 Summary
 Questions

Thursday, October 20, 2011

The lookup problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data…

Client
Lookup(“title”)

?

Thursday, October 20, 2011

Routed queries
(Freenet, Chord, etc.)

N4

Publisher

Client
N6

N9

N7
N8N3

N2

N1

Lookup(“title”)

Key=“title”
Value=MP3 data…

Thursday, October 20, 2011

What is Chord?

 Problem addressed: efficient node localization
 Distributed lookup protocol
 Simplicity, provable performance, proven

correctness
 Support of just one operation: given a key,

Chord maps the key onto a node

Thursday, October 20, 2011

Chord software
 3000 lines of C++ code
 Library to be linked with the application
 provides a lookup(key) – function: yields the

IP address of the node responsible for the
key

 Notifies the node of changes in the set of
keys the node is responsible for

Thursday, October 20, 2011

Overview
 Introduction
 The Chord Algorithm

 Construction of the Chord ring
 Localization of nodes
 Node joins and Stabilization
 Failure/Departure of nodes

 Applications
 Summary
 Questions

Thursday, October 20, 2011

The Chord algorithm –
Construction of the Chord ring
 use Consistent Hash Function assigns each

node and each key an m-bit identifier using SHA
1 (Secure Hash Standard).

 m = any number big enough to make collisions
improbable

 Key identifier = SHA-1(key)
 Node identifier = SHA-1(IP address)
 Both are uniformly distributed
 Both exist in the same ID space

Thursday, October 20, 2011

The Chord algorithm –
Construction of the Chord ring

 identifiers are
arranged on a
identifier circle
modulo 2 =>
Chord ring

m

Thursday, October 20, 2011

The Chord algorithm –
Construction of the Chord ring
 a key k is assigned to

the node whose
identifier is equal to or
greater than the key‘s
identifier

 this node is called
successor(k) and is
the first node
clockwise from k.

Thursday, October 20, 2011

The Chord algorithm –
Simple node localization
// ask node n to find the successor of id
n.find_successor(id)
 if (id (n; successor])
 return successor;
 else
 // forward the query around the
 circle
 return successor.find_successor(id);

=> Number of messages linear in
the number of nodes !

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

 Additional routing information to accelerate
lookups

 Each node n contains a routing table with up
to m entries (m: number of bits of the
identifiers) => finger table

 i entry in the table at node n contains the
first node s that succeeds n by at least 2

 s = successor (n + 2)
 s is called the i finger of node n

i-1
th

th
i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Finger table:
finger[i] =
successor (n + 2)i-1

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization

Important characteristics of this scheme:
 Each node stores information about only a

small number of nodes (m)
 Each nodes knows more about nodes closely

following it than about nodes further away
 A finger table generally does not contain

enough information to directly determine the
successor of an arbitrary key k

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization
 Search in finger table

for the nodes which
most immediately
precedes id

 Invoke
find_successor
from that node

=> Number of
messages O(log N)!

Thursday, October 20, 2011

The Chord algorithm –
Scalable node localization
 Search in finger table

for the nodes which
most immediately
precedes id

 Invoke
find_successor
from that node

=> Number of
messages O(log N)!

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

 To ensure correct lookups, all successor
pointers must be up to date

 => stabilization protocol running periodically
in the background

 Updates finger tables and successor pointers

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

Stabilization protocol:
 Stabilize(): n asks its successor for its

predecessor p and decides whether p should
be n‘s successor instead (this is the case if p
recently joined the system).

 Notify(): notifies n‘s successor of its
existence, so it can change its predecessor
to n

 Fix_fingers(): updates finger tables

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

• N26 joins the system

• N26 acquires N32 as its successor

• N26 notifies N32

• N32 acquires N26 as its predecessor

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

• N26 copies keys

• N21 runs stabilize() and asks its
successor N32 for its predecessor
which is N26.

Thursday, October 20, 2011

The Chord algorithm –
Node joins and stabilization

• N21 acquires N26 as its successor

• N21 notifies N26 of its existence

• N26 acquires N21 as predecessor

Thursday, October 20, 2011

The Chord algorithm –
Impact of node joins on lookups

 All finger table entries
are correct => O(log N)
lookups

 Successor pointers
correct, but fingers
inaccurate =>
correct but slower
lookups

Thursday, October 20, 2011

The Chord algorithm –
Impact of node joins on lookups

 Incorrect successor pointers => lookup might
fail, retry after a pause

 But still correctness!

Thursday, October 20, 2011

The Chord algorithm –
Impact of node joins on lookups

 Stabilization completed => no influence on
performance

 Only for the negligible case that a large
number of nodes joins between the target‘s
predecessor and the target, the lookup is
slightly slower

 No influence on performance as long as
fingers are adjusted faster than the network
doubles in size

Thursday, October 20, 2011

The Chord algorithm –
Failure of nodes

 Correctness relies on
correct successor
pointers

 What happens, if N14,
N21, N32 fail
simultaneously?

 How can N8 acquire
N38 as successor?

Thursday, October 20, 2011

The Chord algorithm –
Failure of nodes

 Correctness relies on
correct successor
pointers

 What happens, if N14,
N21, N32 fail
simultaneously?

 How can N8 acquire
N38 as successor?

Thursday, October 20, 2011

The Chord algorithm –
Failure of nodes

 Each node maintains a successor list of size r
 If the network is initially stable,

and every node fails with probability ½,
find_successor still finds the closest living
successor to the query key and
the expected time to execute find_succesor is
O(log N)

 Proofs are in the paper

Thursday, October 20, 2011

The Chord algorithm –
Failure of nodes

0

0.4

0.8

1.1

1.5

5 10 15 20 25 30 35 40 45 50

Fa
ile

d
Lo

ok
up

s
(P

er
ce

nt
)

Failed Nodes (Percent)

(1/2)6 is 1.6%

Massive failures have little impact

Thursday, October 20, 2011

Overview
 Introduction
 The Chord Algorithm

 Construction of the Chord ring
 Localization of nodes
 Node joins and stabilization
 Failure/Departure of nodes

 Applications
 Summary
 Questions

Thursday, October 20, 2011

Applications:
Chord-based DNS
 DNS provides a lookup service
 keys: host names values: IP addresses
 Chord could hash each host name to a key
 Chord-based DNS:

 no special root servers
 no manual management of routing information
 no naming structure
 can find objects not tied to particular machines

Thursday, October 20, 2011

Summary
 Simple, powerful protocol
 Only operation: map a key to the responsible

node
 Each node maintains information about O(log

N) other nodes
 Lookups via O(log N) messages
 Scales well with number of nodes
 Continues to function correctly despite even

major changes of the system

Thursday, October 20, 2011

Questions?

Thursday, October 20, 2011

Thanks!

Thursday, October 20, 2011

