
MapReduce: Simplified Data 
Processing on Large Clusters 

Naser AlDuaij 



MapReduce: Benefits 

  Programming model for processing/generating large 
data sets 

  Easy to use 
  Highly scalable (order of TBs of data) 



MapReduce: Features 

  Parallelization 
  Fault-tolerance 
  Locality optimization (avoid network overhead) 
  Load balancing 



MapReduce: Real-life applications 

  Google's production web search service 
  Sorting 
  Data mining 
  Machine learning 
  Graph computations 



MapReduce: Map & Reduce 

  Distributed divide & conquer approach 
  Input/output key/value pairs 
  Map: Master node partitions input 
  Reduce: Master node collects & combines data 



MapReduce: Example 

Word frequency 



MapReduce: Types 

Map (k1, v1) → list (k2, v2) 
Reduce (k2, list (v2)) → list (v2)

  Input k,v ≠ Output k,v data domain
  Word Frequency example:
Map (string, string) → list (partial_str, int)
Reduce (partial_str, Iterator (list (int))) → list (int)



MapReduce: More Examples 

  Distributed Grep: Map <pattern> – Reduce <collect 
output> 

  URL Access Frequency: Map <URL, 1> – Reduce 
<URL, total count> 

  Reverse Web-Link Graph: Map <target, src> - 
Reduce <target, list(src)> 



MapReduce: More Examples 

  Term-Vector per Host: Map <hostname, term vec> - 
Reduce <hostname, term vec> 

  Inverted Index: Map <word, doc ID> - Reduce 
<word, list(doc ID)> 

  Distributed Sort: Map <key, rec> - Reduce <key, 
rec> 



MapReduce: Execution Overview 



MapReduce: Execution Overview 

  M map tasks, R reduce tasks / output files 
  Input partitioned into M splits (~16-64 MB/piece) 
  R pieces using tweak-able partitioning function 
  Ideally, M && R >> # of worker machines 
  Task states: <idle, in-progress, completed> 

How is master node chosen? 



MapReduce: Fault Tolerance 

  “Master pings every worker periodically” 
  Completed map tasks re-executed on failure 

(locality) 
  Master redistributes tasks for failed workers 
  MapReduce is aborted on master failure 



MapReduce: Backup Tasks 

“Stragglers”: Slow machines that hinder completion 

  Solution: 
Schedule backup tasks for in-progress tasks towards 

the end of MapReduce run 



MapReduce: Refinements 

  Partitioning function (default: Hash(key) mod R) 
  Key/value pairs processed in increasing order (sorted 

output file per partition) 
  Combiner function: Performed in map with results 

stored in intermediate file 
  Implementable reader interface for new input types 



MapReduce: Side-effects & 
Debugging 

  Users are responsible for output files 
  “No support for atomic two-phase commits of 

multiple output files” 
  Signal handler for worker process (UDP packet) 
  Option to run MapReduce on one local machine 
  “Counter” facility for counting (e.g. # of words) 
  Status information page with statistics 



MapReduce: Performance 

  Two computations: Search and sort (~1TB) 
  Cluster: ~1800 Machines 
  Input split into 64 MB pieces 
  M = 15000, R = 1 for Grep and R = 4000 for sort 



MapReduce: Performance - Grep 

  Search for rare three-character pattern 

  ~150 seconds to complete 



MapReduce: Performance - Sort 



MapReduce: Statistics 



MapReduce: Google's web search 
indexing 

  Code is “Simpler, smaller, easier to understand” 
  3800 → 700 lines of code with MapReduce 
  Good performance with fault tolerance 



MapReduce: Related work 

  Parallelization (Bulk Synchronous Programming) 
  Locality optimization (Active disks) 
  Eager scheduling mechanism (Charlotte System) 
  Cluster management system (Condor) 
  Sorting facility (NOW-Sort) 
  Sending data over distributed queues (River) 
  Fault tolerance (BAD-FS, TACC) 



MapReduce: Simplified Data 
Processing on Large Clusters 

Questions? 

Thank you 


