

Internet Indirection Infrastructure (i3)

Ronghui Gu ronghui.gu@yale.edu

- Introduction
- i3 Overview
- Using i3

<

- Implementation and optimization
- Experimental Results
- Conclusion

MOTIVATION

Unicast point-to-point communication

- One sender, One receiver
- Fixed location, which is well-known
- Host A sends packet p to host B, identified by IP
- Highly scalable and efficient
- Not appropriate for:
 - Multicast
 - Anycast
 - Mobility

MOTIVATION(2)

• Why not appropriate?

- IP layer: lose scalability, requires consensus
- Application layer: in a disjointed fashion

Indirection

- More general abstraction
- Decouples the sending hosts from the receiving host
- Send packet p to a "rendezvous"
- IP layer will send p to the receiver(s)

5

SOLUTION

Build an efficient indirection layer on top of IP

- Use an overlay network
- Incrementally deployable
 - IP layer remains the same
 - Application layer is not aware of its existence

SERVICE MODEL

Rendezvous-based communication (simple)

- Packet is associated with an identifier id (256B)
- Receiver **R** maintains the trigger (id, **R**)
- Triggers have same id are stored on same server
- Best-effort service model

MOBILITY

• Host only needs to update the trigger

<

MULTICAST

• The group member register triggers with same id

• Packet matches **id** will be sent to all the members

No difference between unicast or multicast

ANYCAST(1)

• Extended version 1: Use longest prefix matching

- The length of matching prefix is at least k (125)
- Id's that have k-bit prefix are stored on same server

Multicast group shared k-bit prefix

- Members have different (m-k) bits suffix
- When multicasting, send packet with id, which has a

k-bit prefix match with all the members

10

Anycast: deliver packet to one receiver in a group

• Send packet to member with longest prefix

Extended version 2

- Replace identifier with identifier stack
- Identifier stack is a list of identifiers
 - id_{stack} = $(id_1, id_2, id_3, \dots, id_n)$
 - id_i : identifier or address
- Packet p=(*id*_{stack}, data) trigger t =(id, *id*_{stack})

Match the head of p's stack with t

- Pop p's stack
- Prepend t's stack to p's stack

Data is required to be processed before reach

• Use p's id_{stack} to encode the seq of operations

• Use ability of sender

HETEROGENOUS MULTICAST

• Receiver could process the data before received

• Use t's id_{stack} to encode the seq of operations

• Use ability of receiver

• One server sends packets to all members

Not scale to large multicast group

• Create multicast tree for scalability

IMPLEMENTATION OVERVIEW

Properties

- Robustness, Scalability, Efficiency, Stability
- Chord lookup protocol
 - Route triggers and packets
 - N i3 nodes: O(logN) hops

16

IMPLEMENTATION OVERVIEW

OPTIMIZATION(1)

Public and private triggers

- Public trigger: long lived, contact
- Private trigger: short lived, inform through public one
- Increase efficiency and security

Robustness

- Refresh triggers
- Back-up triggers
- Replicate triggers (successor of node)

OPTIMIZATION(2)

Routing efficiency

- Cache i3 server's IP address
- Triangle routing problem:
 - Choose location of private triggers
- Avoiding hot-spots
 - Copy triggers to the predecessor

SECURITY(1)

New opportunities for malicious users

- IP: end-points can only send and receive packets
- i3 end-points should maintain routing information
- Goal
 - Not worse than today's Internet

SECURITY(2)

SECURITY(3)

Eavesdropping

- Use private triggers, periodically change them
- Multiple private triggers
- Trigger hijacking
 - Add a level of indirection
- DoS Attacks
 - Send challenges when a trigger is inserted
 - Limited triggers, limited packets
 - Loop detection

Experimental Results

PACKET LANENCY

- Latency stretch=(i3 latency)/(IP latency)
- First packet latency
 - Slow: need to find the trigger

Improvement

- Closest finger replica: store r succs of finger
- Closest finger set:
 - Use base b<2 to find finger
 - Consider closest log₂N when routing
- $log_b N = r \cdot log_2 N$

Experimental Results

FIRST PACKET LATENCY

90th percentile first packet latency stretch vs. no of i3 servers for Transit-stub topology

Experimental Results

END-TO-END PACKET LANENCY

WHAT THE PAPER HAS DONE

• Main idea: indirection

• More general abstraction in one overlay

- Multicast
- Anycast
- Mobility

Yale Univ. Ronghui Gu

THANKS FOR YOUR TIME

QUESTIONS?