

Latency Trace Catcher (LTC)

Summer Internship Project
Google, Inc.

New York, NY
2011

Host: Salim Virji

Latency

System
Input

(Request)
Output

(Response)

?

Delay during which the process from input to output is “hidden”
(latent) in an opaque system.

RPCs

User with client Remote host
with server

RPC request

RPC response

In a distributed system, the request is often a remote
procedure call (RPC) to a remote host. The system
includes both the local and the remote hosts. Causes of
delay are hidden from the user.

Nested RPCs

ProcessingNetwork
Receiving

Queue
Processing

Queue
Network

Sending
Queue

Sending
Queue

Network Receiving
Queue

ProcessingNetwork
Receiving

Queue
Processing

Queue Network
Sending
Queue

Sending
Queue

Network
Receiving

Queue

ProcessingNetwork
Receiving

Queue
Processing

Queue
Network

Sending
Queue

Network

Network

More typically, handling a request in a large distributed system will require
nested RPCs from one specialized server to another.

Anomalous Latency

ProcessingNetwork
Receiving

Queue
Processing

Queue
Sending
Queue

Network

ProcessingNetwork
Receiving

Queue
Processing

Queue

A complete trace of this nested RPC would reveal where it had gotten stuck
—and give us a clue as to why.

STUCK!

RPC may time out.

Idle

The Problem

● Get the traces of slow RPCs out of “hiding”
● Do so in near-real time
● Alert administrators automatically and in a

timely fashion
● Make traces available for longer-term storage

...so that ...

The Goals

● Engineers can fix individual problem quickly
● Engineers can find patterns and fix the

underlying causes of excess latency.

Main Challenge

`

How to gather rich, useful information about the system without
burdening that same system and causing artificial, impossibly high
latency!

Other Challenges

● Leverage existing Google tools as much as possible,
BUT ...

● Avoid touching production code wherever possible

● Make minimal changes to production code

● Collaborate with several project teams (storage system,
maintenance, diagnostic tools, monitoring tools …), each
with its own distinct goals and POV

● Design a system from scratch, get it approved, and code it
up, with unit tests, in a summer.

Google Resources (1)

● TraceBuilder*
Daemon running alongside target server (same machine)

● Periodically builds traces from all RPC messages

● Stores traces for ~5 minutes in a FIFO buffer

● Handles TraceFetcher requests

● TraceFetcher*
Central server that fetches a trace by trace ID

● Fetches from all servers involved in servicing the RPC and
assembles traces together

● Stores traces in a central storage depot (TraceBin)

* Fake name to protect Google.

Google Resources (2)

● TraceBin*
Central storage, keeps traces for ~2 weeks.

● Graphic Web UI

● Analytical and statistical tools

● ServerMonitor*
Central daemon per cluster or data center

● Collects information all its target servers expose and update
periodically

● Provides statistics (Web pages)

● Can alert maintenance engineers (e-mail, pager).

* Fake name to protect Google.

Solution Approach (1)

● Specialized TraceBuilder

● Uses a filter to determine eviction from the trace buffer
● TraceFilter service

● Implements filtering based on administrator's
specifications

● Calls TraceFetcher
● Exposes list of reported traces for ServerMonitor

Solution Approach (2)

● Central ThresholdBroadcaster (server and client)

● Takes user's threshold specifications
● Sends them to all instances of TraceFilter in the

cluster/data center
● Specialized ServerMonitor

● Gathers list of reported traces and alerts engineers.

TraceFilter Service
Give me a trace of any
DoSomething RPC that
takes longer than 10.53

seconds.

Give me a trace of any
DoSomething RPC whose latency

lies in the 99.5th percentile.

TraceFilter Service

●Accepts latency specifications
●Computes percentile estimates
●Applies latency specifications
●Calls TraceFetcher

Protocol Buffer Definition
enum ThresholdType {

THRESHOLD_LITERAL = 0;
THRESHOLD_PERCENTILE = 1;

}

message Threshold {
optional string name = 1;
optional double value = 2;
optional ThresholdType threshold_type = 3;

}

message SetThresholdRequest {
repeated Threshold entries = 1;

}

service TraceFilter {
rpc SetThreshold(SetThresholdRequest) returns (EmptyMessage);

}

*** simplified ***

TraceFilter Logic: Reporting

if (trace is complete && trace RPC has spec && trace
 latency ≥ spec threshold)

call TraceFetcher with trace ID to have it fetch the trace
and store it in TraceBin

put trace ID on pending list
expose trace ID to ServerMonitor

TraceFilter Logic: Eviction

if (trace buffer is full)
for each trace in trace buffer (from the back)

if (trace RPC has spec)
if (trace is not complete || trace is on pending list)
keep in trace buffer

else discard trace
else discard trace

accept no new traces until the next cycle

TraceBuilder Specialization

● Modify “normal” (production) code minimally
class TraceBuilder
● Abstract trace buffer eviction policy (default FIFO)
● Insert “hooks” for special intervention (default no-

ops)

● Specialize
class ltc::TraceBuilder : public TraceBuilder
● Overrides eviction policy to use TraceFilter
● Passes completed traces to TraceFilter for checking

LTC Workflow
TraceBuilder

Production
Server

TraceFilterThreshold-
Broadcaster

Server

TraceFetcher

ServerMonitor

Threshold-
Broadcaster

Client

TraceBuilder

Production
Server

TraceFilter

TraceBuilder

Production
Server

TraceFilter

RPC latency
threshold
specifications

List of slow RPC trace IDs

Traces of slow RPCs

Engineer

TraceBin

Alerts

██ Project-specific code

██ Modified code

██ Google resource

Thank You

● Salim Virji, host extraordinaire
● Many other people at Google whose names

and team names are probably company
secrets☺.

