A Hard Language

We give a careful construction of a language L that is not recognizable in polynomial time. The construction is based on diagonalization.

The basic idea presented in class was to simulate each Turing machine M_x with description x for $2^{|x|}$ steps, and to put x in L if M_x did not accept x within $2^{|x|}$ steps. Unfortunately, we cannot quite prove that the language L so constructed is not in P. The argument was supposed to go as follows: Suppose there were a polynomial time Turing machine M_ℓ with description ℓ that accepted L. Let $T_L(\cdot)$ be a polynomial bound on its running time. Consider what M_ℓ does on input ℓ. If M_ℓ halts within $2^{|\ell|}$ steps and accepts ℓ, then by definition of ℓ, $\ell \notin L$. But this contradicts the assumption that M_ℓ accepts L. Similarly, if M_ℓ halts within $2^{|\ell|}$ steps and rejects ℓ, then by definition of ℓ, $\ell \in L$, which also contradicts the assumption that M_ℓ accepts L. We conclude that $M_\ell(\ell)$ runs for more than $2^{|\ell|}$ steps without halting, from which we can conclude $T(|\ell|) > 2^{|\ell|}$. This was supposed to contradict the assumption that $T(\cdot)$ is a polynomial. However, all we can say about the relation between a polynomial $T(n)$ and the function 2^n is that $2^n > T(n)$ for all sufficiently large n.1 This doesn’t preclude having $T(n) > 2^n$ for the particular value $n = |\ell|$.

To fix the proof, we need to be able to argue that each candidate polynomial time machine M_ℓ fails to correctly identify membership in L for infinitely many inputs x, not just for the single value $x = \ell$ as we showed above. If we can do this, the above argument will allow us to conclude that $M_\ell(x)$ fails to halt in $2^{|x|}$ steps for infinitely many x. It will then follow that $T(n) > 2^n$ for infinitely many n, which does contradict the assumption that $T(\cdot)$ is a polynomial.

How do we construct such a language L? In the previous construction, we considered the machine M_ℓ only when trying to decide whether or not to include the string ℓ in L. In the new construction, we will consider the machine M_ℓ when considering many different inputs x. To this end, we need a function $\pi(x)$ on strings that maps infinitely many x onto each string y, that is, $\forall y \exists x (\pi(x) = y)$.\(^2\)

Now, to determine whether to put x in L, we simulate the machine $M_{\pi(x)}$ on input x for $2^{|x|}$ steps. As before, we put x in L if $M_{\pi(x)}$ does not accept x with $2^{|x|}$ steps. This ensures that if M_ℓ is any machine that accepts L, then it runs for more than $2^{|x|}$ steps on all inputs x for which $\pi(x) = \ell$. Since there are infinitely many such x, we conclude that M_ℓ does not run in polynomial time. Hence, $L \notin P$.

How can we construct such a function π? There are many ways, and you might want to think about how to do this before reading further. One way is by using a pairing function, that is, a one-to-one function $\sigma(x, y)$ that maps pairs of strings to strings. Concatenation doesn’t quite work, since it isn’t one-to-one. (For example $\text{concatenate}(00, 00) = \text{concatenate}(00, 00)$.) However, we can make it work by doubling each bit of x and y, and using the pair “01” as a marker to separate the two strings. Thus, $\sigma(00, 1) = 00000111$ and $\sigma(0, 01) = 00010011$. We then define $\pi(\sigma(x, y)) = x$, and for z not in the range of σ, we define $\pi(z) = e$ (the null string). Computing $\pi(z)$ is straightforward: Divide z into pairs of bits. See if all pairs are in $\{00, 01, 11\}$ and exactly one pair

1More precisely, $\exists N(\forall n > N)(2^n > T(n))$. The quantifier combination “$\exists N(\forall n > N)$” occurs so often that we define a new symbol $\forall \infty$ to stand for it. This lets us write the condition more succinctly as $\forall n(2^n > T(n))$, which we read variously as “for all sufficiently large n”, or “for almost all n”, or “for all but finitely many n”.

2$\exists x^{\infty}$ means “there exists infinitely many x”. It is the dual of $\forall x$, so $\exists x P(x) \iff \neg \forall x \neg P(x)$.

is 01. If so, then take the first bit from each pair until the occurrence of 01. If not, or if $|z|$ is odd, then output e.

The fact that we have a language L that is not in \mathcal{P} is not so remarkable by itself, since any non-decidable language such as the halting set H is also not in \mathcal{P}. However, L is decidable, and in fact, L can be computed in exponential time by simply implementing the algorithm that is implicit in its definition. Namely, to test whether or not $x \in L$, one computes $z = \pi(x)$ and then simulates the Turing machine M_z on input x for at most $2^{|x|}$ steps. This requires decoding the description z into a form that the simulator can use followed by $2^{|x|}$ simulation cycles. Without going into details, we claim that all of this can be done on a Turing machine in time that is polynomial in $|x| + 2^{|x|}$, which is $O(c^{|x|})$ for some constant c. So L cannot by accepted by any Turing machine that runs in time $2^{|x|}$, but it can be accepted by a machine that runs in time $O(c^{|x|})$.