CS155a: E-Commerce

Lecture 4: Sept. 18, 2001

How Does the Internet Work? (continued)

Acknowledgements: J. Rexford and V. Ramachandran

Layering in the IP Protocols

Internet Architecture

IP Connectionless Paradigm

- No error detection or correction for packet data
 - Higher-level protocol can provide error checking
- Successive packets may not follow the same path
 - Not a problem as long as packets reach the destination
- Packets can be delivered out-of-order
 - Receiver can put packets back in order (if necessary)
- Packets may be lost or arbitrarily delayed
 - Sender can send the packets again (if desired)
- No network congestion control (beyond "drop")
 - Send can slow down in response to loss or delay

IP Packet Structure

Main IP Header Fields

- Version number (e.g., version 4, version 6)
- Header length (number of 4-byte words)
- Header checksum (error check on header)
- Source and destination IP addresses
- Upper-level protocol (e.g., TCP, UDP)
- Length in bytes (up to 65,535 bytes)
- IP options (security, routing, timestamping, etc.)

Time-to-Live Field

- Potential robustness problem
 - What happens if a packet gets stuck in a routing loop?
 - What happens if the packet arrives much later?
- Time-to-live field in packet header
 - TTL field decremented by each router on the path
 - Packet is discarded when TTL field reaches 0
 - Discard generates "timer expired" message to source
- Expiry message exploited in traceroute tool
 - Generate packets with TTL of i=1, 2, 3, 4, ...
 - Extract router id from the "timer expired" message
 - Provides a way to gauge the path to destination

Type-of-Service Bits

- Initially, envisioned for type-of-service routing
 - Low-delay, high-throughput, high-reliability, etc.
 - However, current IP routing protocols are static
 - And, most routers have first-in-first-out queuing
 - So, the ToS bits are ignored in most routers today
- Now, heated debate for differentiated services
 - ToS bits used to define a small number of classes
 - Affect router packet scheduling and buffering polices
 - Arguments about consistent meaning across networks

Transmission Control Protocol (TCP)

- Byte-stream socket abstraction for applications
- **Retransmission** of lost or corrupted packets
- Flow-control to respond to network congestion
- Simultaneous transmission in both directions
- Multiplexing of multiple logical connections

TCP Header

Establishing a TCP Connection

- Three-way handshake to establish connection
 - Host A sends a SYN (open) to the host B
 - Host B returns a SYN acknowledgement (ACK)
 - Host A sends an ACK to acknowledge the SYN ACK
- Closing the connection
 - Finish (FIN) to close and receive remaining bytes (and other host sends a FIN ACK to acknowledge)
 - Reset (RST) to close and not receive remaining bytes

Lost and Corrupted Packets

- Detecting corrupted and lost packets
 - Error detection via checksum on header and data
 - Sender sends packet, sets timeout, and waits for ACK
 - Receiver sends ACKs for received packets
- Retransmission from sender
 - Sender retransmits lost/corrupted packets
 - Receiver reassembles and reorders packets
 - Receiver discards corrupted and duplicated packets

Packet loss rates are high (e.g., 10%), causing significant delay (especially for short Web transfers)!

TCP Flow Control

- Packet loss used to indicate network congestion
 - Router drop packets when buffers are (nearly) full
 - Affected TCP connection reacts by backing-off
- Window-based flow control
 - Sender limits number of outstanding bytes
 - Sender reduces window size when packets are lost
 - Initial slow-start phase to learn a good window size
- TCP flow-control header fields
 - Window size (maximum # of outstanding bytes)
 - Sequence number (byte offset from starting #)
 - Acknowledgement number (cumulative bytes)

User Datagram Protocol (UDP)

- Some applications do not want or need TCP
 - Don't need recovery from lost or corrupted packets
 - Don't want flow control to respond to loss/congestion
- Amount of UDP packets is rapidly increasing
 - Commonly used for multimedia applications
 - UDP traffic interferes with TCP performance
 - But, many firewalls do not accept UDP packets
- Dealing with the growth in UDP traffic
 - Pressure for applications to apply flow control
 - Future routers may enforce "TCP-like" behavior
 - Need better mathematical models of TCP behavior

Getting an IP Packet From A to B

- Host must know at least three IP addresses
 - Host IP address (to use as its own source address)
 - Domain Name Service (to map names to addresses)
 - Default router to reach other hosts (e.g., gateway)
- Simple customer/company
 - Connected to a single service provider
 - Has just one router connecting to the provider
 - Has a set of IP addresses allocated in advance
 - Does not run an Internet routing protocol

Autonomous System: A collection of IP subnets and routers under the same administrative authority.

Interior Routing Protocol (e.g., Open Shortest Path First) ----- Exterior Routing Protocol (e.g., Border Gateway Protocol)

Open Shortest-Path First (OSPF) Routing

- Network is a graph with routers and links
 - Each unidirectional link has a weight (1-63,535)
 - Shortest-path routes from sum of link weights
- Weights are assigned statically (configuration file)
 - Weights based on capacity, distance, and traffic
 - Flooding of info about weights and IP addresses
- Large networks can be divided into multiple domains

Example Network and Shortest Path

IP Routing in OSPF

- Each router has a complete view of the topology
 - Each router transmits information about its links
 - Reliable flooding to all routers in the domain
 - Updates periodically or on link failure/installation
- Each router computes shortest path(s)
 - Maintenance of a complete link-state database
 - Execution of Dijkstra's shortest-path algorithm
- Each router constructs a forwarding table
 - Forwarding table with next hop for each destination
 - Hop-by-hop routing independently by each router

Routing Software

- Routing protocol software
 - Checking connection with neighboring routers ("hello")
 - Exchanging link-state information with other routers
 - Computing shortest paths and IP forwarding table
 - Handling of packets with IP options selected
 - Exchanging routing information between providers
- Router management and configuration
 - Configuration files to configure addresses, routing, etc.
 - Command-line interface to inspect/change configuration
 - Logging of statistics in management information base
 - More complex traffic measurement (e.g., NetFlow)

Border Gateway Protocol (BGP)

- BGP routes traffic through a network where the AS's can be connected in any way.
- Three types of AS's: stub (local traffic only); multihomed (multiple connections but local traffic only); transit ("thru" and local traffic).

Border Gateway Protocol (BGP)

- Reachability: from one AS, what other AS's can be reached from it?
- Every AS has a BGP Speaker node that advertises its reachability info by sending complete paths to reachable networks.
- Given advertised updates, we calculate loop-free routes to networks.
- Problem of scale: too many networks; don't know how an AS works, so it's hard to determine cost to send through each.

Connecting With Our Neighbors

- Public peering
 - Network Access Points (e.g., MAE East, MAE West)
 - Public location for connecting routers
 - Routers exchange data and routing information
- Private peering
 - Private connections between two peers (e.g., MCI)
 - Private peers exchange direct traffic (no transit)
 - Private peers must exchange similar traffic volumes
- Transit networks
 - Provider pays another for transit service (e.g., BBN)
 - Improve performance and reach more addresses

Reference

 For more information, see:
Peterson and Davie, <u>Computer</u> <u>Networks: A Systems Approach</u>. Morgan Kaufmann Publishers, 1999.

Reading Assignment For September 20

- "The Heavenly Jukebox," Charles C. Mann, <u>The Atlantic Monthly</u>, September 2000. (http://www.theatlantic.com/issues/2000/09/mann.htm)
- Addendum to Chapter 4 (Sections 106, 107, 109 of U.S. Copyright Law) and Chapter 5 of <u>The Digital Dilemma</u>. (<u>http://books.nap.edu/html/digital_dilemma/</u>)
- (Optional) Chapter 1 and Appendix E of <u>The Digital Dilemma</u>.